![2012苏教版高中数学:第25课——对数函数(3)教师版教案第1页](http://img-preview.51jiaoxi.com/3/3/12485075/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
高中数学苏教版必修13.2.2 对数函数教案
展开
这是一份高中数学苏教版必修13.2.2 对数函数教案,共3页。教案主要包含了精典范例,选修延伸等内容,欢迎下载使用。
第二十五课时 对数函数(3)学习要求 1.会求一类与对数函数有关的复合函数的定义域、值域和单调性等;2.能熟练地运用对数函数的性质解题;3.提高学生分析问题和解决问题的能力。自学评价1.2.3.4.【精典范例】例1:讨论函数的奇偶性与单调性。【解】由题意可知:解得:定义域为又为偶函数证明:在是任取令,,则,即又在上是增函数即在上单调递增。同理可证:在上单调递减。点评:判断函数奇偶性,必须先求出定义域,单调性的判断在定义域内用定义判断。例2:(1)求函数的单调区间.(2)若函数在区间上是增函数,的取值范围.【解】(1)令在上递增,在上递减,又∵, ∴或,故在上递增,在上递减, 又∵为减函数,所以,函数在上递增,在上递减.(2)令, ∵函数为减函数,∴在区间上递减,且满足,∴,解得,所以,的取值范围为.点评:利用对数函数性质判断函数单调性时,首先要考察函数的定义域,再利用复合函数单调性的判断方法来求单调区间.例3:已知满足 ,求函数的最值。【解】由题意:可转化为:,将看作整体,解得:,即,所以令,则则所以, 点评:利用函数的单调性求函数最值(或值域)是求函数最值(或值域)的主要方法之一,本题首先要根据条件求出的取值范围,体现了整体思想方法,然后转化为二次函数,体现了化归的思想方法,换元法的使用是实现化归思想的一种手段,也是化归的一个过程。追踪训练一1. 函数的定义域是(0,2),值域是,单调增区间是(0,1)2.求函数的最小值和最大值。答案:1。定义域:值域:单调增区间:2.最小值, 最大值7【选修延伸】一、对数与方程 例4:若方程的所有解都大于1,求的取值范围。分析:由对数函数的性质,方程可变形为关于的一元二次方程,化归为一元二次方程解的讨论。【解】原方程可化为: 即 令,则方程等价于若原方程的所有解都大于1,则方程(*)的所有解都大于0,则解得:思维点拔:(1)有关对数方程解的情况讨论,通常是利用换元法,将方程转化为一元一次或一元二次方程解的讨论;如果是方程解的个数问题,又可以用函数的图象求解,如求方程的实根的个数。(2)换元后必须保证新变量与所替换的量的取值范围的一致性。追踪训练二1. 已知方程(1)若方程有且只有一个根,求的取值范围 .(2)若方程无实数根,求的取值范围 .答案:(1) (2) 学生质疑 教师释疑
相关教案
这是一份必修13.2.1 对数教案,共3页。教案主要包含了精典范例,选修延伸等内容,欢迎下载使用。
这是一份苏教版必修13.2.2 对数函数教案,共3页。教案主要包含了精典范例,选修延伸等内容,欢迎下载使用。
这是一份数学必修13.2.2 对数函数教案,共3页。教案主要包含了学习导航,精典范例等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)