高中苏教版3.2.2 对数函数教案设计
展开
第二十四课时 对数函数(2)
学习要求
1.复习巩固对数函数的图象和性质;
2.会求一类与对数函数有关的复合函数的定义域、值域等;
3.了解函数图像的平移变换、对称变换、绝对值变换。.
自学评价
1.函数的图象是由函数
的图象
2. 函数的图象是由函数的图象 得到。
3. 函数()的图象是由函数的图象当时先向左平移 b个单位,再向上平移c 个单位得到; 当时先向右平移| b|个单位,再向上平移c 个单位得到; 当时先向左平移 b个单位,再向下平移|c |个单位得到; 当时先向右平移| b|个 单位,再向下平移|c| 个单位得到。
4.说明:上述变换称为平移变换。
【精典范例】
例1:说明下列函数的图像与对数函数的图像的关系,并画出它们的示意图,由图像写出它的单调区间:
(1); (2);
(3) ;(4)
分析:由函数式出发分析它与的关系,再由的图象作出相应函数的图象。
【解】(1)
图象(略)
由图象知:单调增区间为,单调减区间为。
(2)
由图象知:单调增区间为,单调减区间为。
(3)
由图象知:单调减区间为。
(4)
由图象知:单调减区间为。
点评:
(1)上述变换称为对称变换。一般地:
①;
②;
③;
④
(2)练习:怎样由对数函数的图像得到下列函数的图像?
(1);
(2);
答案:(1)由的图象先向2左平移1个单位,保留上方部分的图象,并把轴下方部分的图象翻折上去得到
的图象。
(2)的图象是关于轴对称的图象。
例2:求下列函数的定义域、值域:
(1); (2); (3)(且).
分析:这是复合函数的值域问题,复合函数的值域的求法是在定义域的基础上,利用函数的单调性,由内而外,逐层求解。
点评: 求复合函数的值域一定要注意定义域。
例3:设f (x)=lg(ax2-2x+a),
(1) 如果f (x)的定义域是(-∞, +∞),求a的取值范围;
(2) 如果f (x)的值域是(-∞, +∞),求a的取值范围.
追踪训练一
1. 比较下列各组值的大小:
(1),;
(2),,;
2.解下列不等式:
(1) (2)
3.画出函数与的图象,并指出这两个函数图象之间的关系。
【选修延伸】
例4: 已知,比较,的大小。
[分析]:由条件可得:
;
所以,,则。
[变式]:已知,则,的大小又如何?
【解】∵,
∴,
当,时,得,
∴, ∴.
当,时,得,
∴, ∴.
当,时,得,,
∴,, ∴.
综上所述,,的大小关系为或或
思维点拔:
对于不同底的对数式,一般的方法是转化为同底的对数式,然后再利用对数函数的单调性求解,此类题目也可以用对数函数的图象的分布特征求解。数形结合是解决函数问题的重要思想方法。
追踪训练二
1比较下列各组值的大小.
,,
学生质疑 |
|
教师释疑 |
|
高中苏教版3.2.2 对数函数教案设计: 这是一份高中苏教版3.2.2 对数函数教案设计,共3页。教案主要包含了精典范例,选修延伸等内容,欢迎下载使用。
高中数学苏教版必修13.2.2 对数函数教案设计: 这是一份高中数学苏教版必修13.2.2 对数函数教案设计,共2页。
高中数学苏教版必修13.2.2 对数函数教案设计: 这是一份高中数学苏教版必修13.2.2 对数函数教案设计,共2页。