苏教版必修1第3章 指数函数、对数函数和幂函数3.3 幂函数教案
展开幂函数
【学习导航】
知识网络
学习要求
1.了解幂函数的概念,能画出一些简单幂函数图象并了解它们的图形特征;
2.掌握判断某些简单函数奇偶性的方法;
3.培养学生判断推理的能力,加强数形结合思想,化归转化能力的培养.
自学评价
1.幂函数的性质:
(1)都过点;
(2)任何幂函数都不过 第四 象限;
(3)当时,幂函数的图象过 原点 .
2.幂函数的图象在第一象限的分布规律:
(1)在经过点平行于轴的直线的右侧,按幂指数由小到大的关系幂函数的图象从 下 到 上 分布;
(2)幂指数的分母为偶数时,图象只在
第一 象限;幂指数的分子为偶数时,图象在第一、第二象限关于轴对称;幂指数的分子、分母都为奇数时,图象在第一、第三象限关于 原点 对称.
【精典范例】
例1:讨论下列函数的定义域、值域,奇偶性与单调性:(1) (2)
(3)(4)(5)
分析:要求幂函数的定义域和值域,可先将分数指数式化为根式.
【解】(1)定义域R,值域R,奇函数,在R上单调递增.
(2)定义域,值域,偶函数,在上单调递增,在上单调递减.
(3)定义域,值域,偶函数,非奇非偶函数,在上单调递增.
(4)定义域,值域,奇函数,在上单调递减,在上单调递减.
(5)定义域,值域,非奇非偶函数,在上单调递减.
点评: 熟练进行分数指数幂与根式的互化,是研究幂函数性质的基础.
例2:将下列各组数用小于号从小到大排列:
(1)
(2)
(3)
分析:(1)底数相异,指数相同的数比较大小,可以转化为比较同一幂函数的不同函数值的大小问题,根据函数的单调性,只要比较自变量的大小就可以了.
(2)观察发现,这三个数指数可以统一,底数可以化为正数,故可利用幂函数的单调性比较大小.
【解】(1)
(2)
(3)
点评: 比较幂形式的两个数的大小,一般的思路是:(1)若能化为同指数,则用幂函数的单调性;(2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.
例3:已知的图象如图所示:
则,,,的大小关系是:
分析:对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:正抛物负双曲,大竖直小横铺.即
【解】有幂函数的性质,当自变量时,幂指数大的函数值比较大,故有
点评: 幂函数在第一象限内的图象均过点,在区间 上,值越小,图象越靠近轴.
追踪训练一
1. 图中曲线是幂函数在第一相限的图象,已知取, 四个值,则相应与曲线、、、的值依次为( B )
,,,
,,,
,,,
,,,
2.给出下列四个函数:;;;,其中定义域和值域相同的是 (2)(3) (写出所有满足条件的函数的序号)
3. 比较下列几组数大小
(1),,;
(2),,.
解:(1)∵幂函数在上单调递增,且,
∴;
(2),,,
∵幂函数在上单调递减,且,,
∴即.
【选修延伸】
一、幂函数性质的运用
例4: 已知,求的取值范围.
分析:数形给合思想的运用.由于不等式的左右两边的幂指数都是,因此可借助于幂函数的图象性质来求解.
【解】因为在和上为减函数,时,;时,.原不等式可以化为
(1)(2)
(3)
(1)无解;(2),(3)
所以所求的取值范围为
{}
点评:利用函数图象特征了解函数的性质,利用函数性质去解不等式.
二、幂函数图象的性质特征
例5:已知幂函数()的图象与轴、轴都无交点,且关于原点对称,求的值.
分析:幂函数图象与轴、轴都无交点,则指数小于或等于零;图象关于原点对称,则函数为奇函数.结合,便可逐步确定的值.
【解】 ∵幂函数()的图象与轴、轴都无交点,
∴,∴;
∵,∴,又函数图象关于原点对称,
∴是奇数,∴或.
点评: 掌握幂函数图象的特征,是顺利解题的关键.
思维点拔:
(1)比较同指数幂的大小,利用幂函数的单调性;
(2)根据幂函数的图象,判断指数的大小,或根据幂函数的指数的大小,描述其图象的特征;
(3)判断幂函数的奇偶性,宜先将分数指数化为根式的形式.
追踪训练二
1.设满足,下列不等式中正确的是 ( C )
A.B.C. D.
2.函数在第二象限内单调递增,则的最大负整数是.
3.求函数的值域.
答案:
数学必修13.3 幂函数教学设计: 这是一份数学必修13.3 幂函数教学设计,共5页。教案主要包含了幂函数图象的作法,幂函数图象的类型,幂函数图象特征,幂函数典型问题等内容,欢迎下载使用。
2021学年第3章 指数函数、对数函数和幂函数3.3 幂函数教案设计: 这是一份2021学年第3章 指数函数、对数函数和幂函数3.3 幂函数教案设计,共6页。教案主要包含了分类讨论的思想,数形结合的思想,转化的数学思想等内容,欢迎下载使用。
高中数学苏教版必修13.3 幂函数教学设计及反思: 这是一份高中数学苏教版必修13.3 幂函数教学设计及反思,共5页。教案主要包含了学习目标,教学效果,巩固与练习等内容,欢迎下载使用。