高中数学苏教版必修13.4.2 函数模型及其应用教学设计及反思
展开
这是一份高中数学苏教版必修13.4.2 函数模型及其应用教学设计及反思,共6页。教案主要包含了学习导航,精典范例,选修延伸等内容,欢迎下载使用。
第三十三课时 函数模型及其应用(1)【学习导航】 知识网络 学习要求 1.了解解实际应用题的一般步骤;2.初步学会根据已知条件建立函数关系式的方法;3.渗透建模思想,初步具有建模的能力.自学评价1.数学模型就是把 实际问题 用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题,得出关于实际问题的数学描述. 2. 数学建模就是把实际问题加以 抽象概括 建立相应的 数学模型 的过程,是数学地解决问题的关键.3. 实际应用问题建立函数关系式后一般都要考察 定义域 .【精典范例】例1.写出等腰三角形顶角(单位:度)与底角的函数关系.【解】 点评: 函数的定义域是函数关系的重要组成部分.实际问题中的函数的定义域,不仅要使函数表达式有意义,而且要使实际问题有意义.例2.某计算机集团公司生产某种型号计算机的固定成本为万元,生产每台计算机的可变成本为元,每台计算机的售价为元.分别写出总成本 (万元)、单位成本(万元)、销售收入(万元)以及利润(万元)关于总产量(台)的函数关系式. 分析:销售利润销售收入成本,其中成本 (固定成本可变成本). 【解】总成本与总产量的关系为.单位成本与总产量的关系为.销售收入与总产量的关系为.利润与总产量的关系为 .例3.大气温度随着离开地面的高度增大而降低,到上空为止,大约每上升,气温降低,而在更高的上空气温却几乎没变(设地面温度为).求:(1)与的函数关系式;(2)以及处的气温.【解】(1)由题意,当时,,∴当时,,从而当时,.综上,所求函数关系为;(2)由(1)知,处的气温为, 处的气温为.点评:由于自变量在不同的范围中函数的表达式不同,因此本例第1小题得到的是关于自变量的分段函数;第2小题是已知自变量的值,求函数值的问题. 追踪训练一1.生产一定数量的商品时的全部支出称为生产成本,可表示为商品数量的函数,现知道一企业生产某种产品的数量为件时的成本函数是(元),若每售出一件这种商品的收入是元,那么生产并销售这种商品的数量是件时,该企业所得的利润可达到. 2.某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量(微克)与时间(小时)之间近似满足如图所示的曲线.(为线段,为某二次函数图象的一部分,为原点).(1)写出服药后与之间的函数关系式;(2)据进一步测定:每毫升血液中含药量不少于微克时,对治疗有效,求服药一次治疗疾病有效的时间.解:(1)由已知得(2)当时,,得;当时,, 得 , ∴ ∴, ∴, 因此服药一次治疗疾病有效的时间约为小时.【选修延伸】一、函数与图象 高考热点1: (2002年高考上海文,理16)一般地,家庭用电量(千瓦时)与气温(℃)有一定的关系,如图所示,图(1)表示某年个月中每月的平均气温.图(2)表示某家庭在这年个月中每个月的用电量.根据这些信息,以下关于该家庭用电量与其气温间关系的叙述中,正确的是( )A.气温最高时,用电量最多B.气温最低时,用电量最少C.当气温大于某一值时,用电量随气温增高而增加D.当气温小于某一值时,用电量随气温渐低而增加答案:C分析:该题考查对图表的识别和理解能力.【解】经比较可发现,月份用电量最多,而月份气温明显不是最高.因此项错误.同理可判断出项错误.由、、三个月的气温和用电量可得出项正确.思维点拔:数学应用题的一般求解程序(1)审题:弄清题目意,分清条件和结论,理顺数量关系;(2)建模:将题目条件的文字语言转化成数学语言,用数学知识建立相应的数学模型;(3)解模:求解数学模型,得到数学结论;(4)结论:将用数学方法得到的结论还原为实际问题的意义,并根据题意下结论.追踪训练二1. 有一块半径为的半圆形钢板,计划剪裁成等腰梯形的形状,它的下底是⊙O的直径,上底的端点在圆周上,写出这个梯形周长和腰长间的函数关系式,并求出它的定义域.分析:关键是用半径与腰长表示上底,由对称性:,故只要求出.解:设腰长,作垂足为, 连结,则,∴∽,∴,, ∴∴周长,∵是圆内接梯形 ∴,即,解得, 即函数的定义域为本节学习疑点:如何根据题意建立恰当的函数模型来解决实际问题.第33课 函数模型及其应用(1)分层训练1.某工厂生产一种产品每件成本为元,出厂价为元,厂家从每件产品获纯利,则( ) 2.某商场进了两套服装,提价后以元卖出,降价后以元卖出,则这两套服装销售后 ( )不赚不亏 赚了元亏了元 赚了元3.某商品降价后,欲恢复原价,则应提价( ) 4.某种茶杯,每个元,把买茶杯的钱数(元)表示为茶杯个数(个)的函数 ,其定义域为 .5.某种商品的进货价为元,零售价为每件元,若商店按零售价的降价出售,仍可获利(相对于进货价),则 元. 6.建筑一个容积为,深为的长方体蓄水池,池壁的造价为元/,池底的造价为元/,把总造价(元)表示为底的一边长的函数. 7.某人骑自行车沿直线匀速旅行,先前进了千米,休息了一段时间,又沿原路返回千米,再前进千米,则此人离起点的距离与时间的关系示意图是 ( ) 8.某物体一天中的温度是时间的函数:,时间单位是小时,温度单位是,时表示,其后取值为正,则上午时的温度为 ( ) 9.物体从静止状态下落,下落的距离与开始下落所经过的时间的平方成正比.已知开始下落的最初两秒间,物体下落了米,则下落的距离(米)与所经过的时间(秒)间的关系为 .10.某商人购货,进价已按原价扣去,他希望对货物定一新价,以便按新价让利销售后仍可获得进价的的纯利,则此商人经营这种货物的件数与获利总额之间的函数关系式是 .11.某服装厂生产一种服装,每件服装的成本为元,出厂单价定位元.该厂为鼓励销售商订购,决定当一次订购量超过件时,每多订购一件,订购的全部服装的出厂单价就降低元.根据市场调查,销售商一次订购订购量不会超过件.(1)设一次订购量为件,服装的实际出厂单价为元,写出函数的表达式;(2)当销售商一次订购了件服装时,该服装厂获得的利润是多少元?(服装厂售出一件服装的利润=实际出厂单价-成本)拓展延伸12.今有一组实验数据如下:1.993.04.05.16.121.54.047.51218.01 现准备用下列函数中的一个表示这些数据满足的规律,其中最接近的一个是( ) () ()() () 13.一辆汽车在某段路程中行驶速率与时间的关系如图所示.(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为,试建立行驶这段路程时汽车里程表读数与时间 的函数解析式,并作出相应的图象.
相关教案
这是一份高中数学苏教版必修13.4.2 函数模型及其应用教案,共11页。
这是一份苏教版必修13.4.2 函数模型及其应用教案及反思,共3页。教案主要包含了情境创设,学生活动,例题解析,小结,作业等内容,欢迎下载使用。
这是一份苏教版必修13.4.2 函数模型及其应用教案设计,共3页。教案主要包含了情境创设,学生活动,例题解析,小结,作业等内容,欢迎下载使用。