开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省常州市西夏墅中学高一数学《函数模型及其应用》学案(2)(苏教版必修1)教案

    江苏省常州市西夏墅中学高一数学《函数模型及其应用》学案(2)(苏教版必修1)教案第1页
    江苏省常州市西夏墅中学高一数学《函数模型及其应用》学案(2)(苏教版必修1)教案第2页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年3.4.2 函数模型及其应用教学设计

    展开

    这是一份2020-2021学年3.4.2 函数模型及其应用教学设计,共4页。教案主要包含了学习目标等内容,欢迎下载使用。
    江苏省常州市西夏墅中学高一数学《函数模型及其应用》学案(2) 一、学习目标1、  能根据图形、表格等实际问题的情境建立数学模型,并求解;进一步了解函数模型在解决简单的实际问题中的应用,了解函数模型在社会生活中的广泛应用;一、  复习旧知 问题1、函数的表示方法有                                  问题2、某学生离家去学校,为了锻炼身体,一开始跑步前进,跑累了再走余下的路,下图中,纵轴表示离学校的距离,横轴表示出发后的时间,则下列四个图形中较符合该生走法的是(  )  二、  问题解决问题3、有一块半径为R的半圆形钢板,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O的直径,上底CD的端点在圆周上,写出这个梯形周长y和腰长x间的函数关系式,并求出它的定义域.    问题4、 一家旅社有100间相同的客房,经过一段时间的经营实践,旅社经理发现每间客房每天的价格与住房率有如下关系:每间客房定价20181614住房率65%75%85%95%要使每天收入最高,每间客房定价为多少元?   问题5、今年5月,荔枝上市.由历年的市场行情得知,从510日起的60天内,荔枝的市场售价与上市时间的关系大致可用如图所示的折线ABCD表示(市场售价的单位为元/500g)请写出市场售价S(t)()与上市时间t()的函数关系式,并求出620日当天的荔枝市场售价.   练习反馈:练习:1.直角梯形OABC中,ABOCAB1OCBC2,直线lx       2.一个圆柱形容器的底部直径是dcm,高是hcm,现在以vcm3/s的速度向容器内注入某种溶液,求容器内溶液的高度x(cm)与注入溶液的时间t(s)之间的函数关系式,并写出函数的定义域. 3.向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状可能是(    )  4.某公司将进货单价为10元一个的商品按13元一个销售,每天可卖200个.若这种商品每涨价1元,销售量则减少26个.1)售价为15元时,销售利润为多少?2)若销售价必须为整数,要使利润最大,应如何定价?  课堂小结:   课后作业:1、基础达标:1、  某地高山上温度从山脚开始每升高100m降低0.6。已知山顶的温度是14.6,山脚的温度是26。问此山多高?2、  某车站有快慢两种车,始发站距离终点站7.2㎞,慢车到终点需16分钟,快车比慢车晚发车3分钟,且行驶10分钟后到达终点站。试分别写出两车所行驶路程关于慢车行驶时间的函数关系式。两车在何时相遇?相遇时距离始发站多远?3、  某店从水果市场购得两筐椰子,连同运费共花了300元,回来后发现有12个是坏得,不能将它们出售,余下的椰子按高出成本价1元/个出售,售完后共盈利78元,问:这两筐椰子原来共有多少个?4、  将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使得正方形和圆的面积和最小,正方形的周长为多少?5、  一家报刊推销员从报社买进报纸的价格是每份0.20元,卖出的价格是每份0.30元,卖不完的还可以以每份0.08元的价格退回报社.在一个月(以30天计算)有20天每天可卖出400份,其余10天只能卖250份,但每天从报社买进报纸的份数都相同,问应该从报社买多少份才能使每月所获得的利润最大?并计算每月最多能赚多少钱?6、  某人从A地到B地乘坐出租车,有两种方案,第一种方案:租用起步价10元,每km价为1.2元的汽车;第二种方案:租用起步价为8元,每km价为1.4元的汽车,按出租车管理条例,在起步价内,不同型号行驶的里程是相等的.则此人从A地到扫地选择哪一种方案比较合适. 能力提升7、某地方政府为保护地方电子工业发展,决定对某一进口电子产品征收附加税.已知这种电子产品国内市场零售价为每件250元,每年可销售40万件,若政府增加附加税率为每百元收t元时,则每年销售量将减少 t万件.  (1)将税金收入表示为征收附加税率的函数;  (2)若在该项经营中每年征收附加税金不低于600万元,那么附加税率应控制在什么范围?    8、为保护环境,实现城市绿化,某房地产公司要在拆迁地矩形ABCD(如下图所示)上规划出一块矩形地面建造住宅区小公园POCR(公园的两边分别落在BCCD上),但不能超过文物保护三角形AEF的红线EF.问如何设计才能使公园占地面积最大?并求出最大面积.已知ABCD=200mBCAD=160mAE=60mAF=40m        

    相关教案

    高中数学苏教版必修1第3章 指数函数、对数函数和幂函数3.4 函数的应用3.4.2 函数模型及其应用教学设计及反思:

    这是一份高中数学苏教版必修1第3章 指数函数、对数函数和幂函数3.4 函数的应用3.4.2 函数模型及其应用教学设计及反思,共4页。教案主要包含了课堂反馈,课后作业等内容,欢迎下载使用。

    高中数学苏教版必修13.4.2 函数模型及其应用教学设计:

    这是一份高中数学苏教版必修13.4.2 函数模型及其应用教学设计,共4页。教案主要包含了学习目标等内容,欢迎下载使用。

    高中苏教版3.4.2 函数模型及其应用教案及反思:

    这是一份高中苏教版3.4.2 函数模型及其应用教案及反思,共13页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map