数学必修31.1.1算法的概念教学设计
展开课题:算法的概念
教学目标 1、知识目标:了解算法。分析算法。2、能力目标:体验程序的独特魅力,了解编程加工的内在机制,培养学生的创新能力。 3、情感目标:通过编程实现信息的加工,激发学生的兴趣,增加学生的成就感。
重点:如何分析算法,算法的概念 ,算法的表示
难点: 如何写算法。理解用算法描述实际问题,理解人的思维在计算机工作中发挥的作用。
教学方法:讲授法,演示法,归纳法
教学反思:
教 学 过 程
一、 导入
在学习程序设计时,既要掌握所使用的某种计算机计算机语言如PASCAL语言,更好掌握解题的方法和步骤,这是程序设计中的关键。语言只是一个工具,只懂得语言的规则并不能编制出有效的高质量的程序,下面所讲座的算法,就是研究解题的步骤和方法,这是编程的基础,同时也是我们解数理化题的基础。
著名计算机科学家沃思提出一个公式:
数据结构 + 算法 = 程序
二新授
什么是算法:广义地说,为解决一个问题而采取的方法和步骤,就称为“算法”。
或者说:算法是解题方法的精确描述。解决一个问题的过程,就是实现一个算法的过程。
1.做任何事情都有一定的步骤。例如要计算
的值,无论手算,心算,或用算盘,计算器计算,都要经过有限的事先设计好的步骤。
2、对同一个问题,往往有不同的解题方法和步骤
如
• 方法1:顺序计算1-1/2+1/3-1/4+1/5……+1/99-1/100,一直加到100 加99次
• 方法2:先计算+,再计算减,即1+1/3+1/5……+1/99,1/2+1/4+1/6……+1/100当然各种方法有优劣之分。
3、不仅数值计算的问题要研究算法,实际上,做任何事情。都需要事先设想好的步骤和方法,这就是算法。
计算机算法可分为两大类别:
• 数值运算
• 非数值运算
数值运算举例:求数值解,例如求方程的根、求函数的定积分等。
非数值运算举例:人名排序,图书资料检索等.
三、 简单算法举例
为了理解如何设计算法,下面举几个算法的简单例子。
[例1] 有两个杯子A和B,分别盛有果汁和酒,要求将这两个杯子进行互换。
(请学生回答,并要求说清楚明确的步骤)
学生所回答的步骤就是算法的描述:
根据常识,必须增加一个空杯C作为过渡。
其算法表示
步骤1:先将A杯中的果汁倒在C杯中;
步骤2:再讲B杯中的酒倒在A杯中;
步骤3:最后将C杯中的果汁倒在B杯中。
此问题可以抽象为数值运算中的交换两个变量的值,简化为:
①A → C
②B → A
③C → B
[例2] 从十个数中挑选出最大的数。
创设情景:这个问题的思路可以用“打描台”来比喻。第一个同学先上讲台,然后第二个同学上去比试,胜者(个子高的)留在讲台上,依次轮流,一直到第十个人比完为止()一共九次)最后留在讲台上的同学就是胜者(个子最高的同学)。
算法描述:
1. 先任选一个数放在变量A中;
2. 将第二个数与变量A中的数进行比较,大者放在变量A中;
3. 再将第三个数与变量A中的数进行比较,大者放在变量A中;
:
:
:
10.最后将第十个数与变量A中的数进行比较,大者放在变量A中。
这样写算法虽然正确,但是太烦琐了,可以简化为如下:
1. 数X → A,计数器 0 → N;
2. 下一个数Y与A比较,大者→ A;
3. N + 1 → N;(增加一次比较次数)
4. 若N ﹤ 9,执行第2步,否则停止循环,此时A中的数最大。
显然,用“循环”表示的算法比较简练。
如果题目要求改为“从1000个数中挑选最大者”,只许需要将算法里面的第4步中的“9”改为“999”即可。
[例3] 求两个正整数m和n的最大公约数。
解题之前介绍“辗转相除法”求最大公约数的方法。“辗转”就字面意思来讲是翻来覆去的意思,因此“辗转相除法”的格式可以形象地表示为:
将m和n赋具体值,m = 60,n = 14,板书具体求解方法。
用m 作被除数, n 作除数,r 做余数。
具体方法(算法)为:
①求m/n的余数r;
②若r = 0 ,则n为最大公约数,若r ≠ 0,执行第③步;
③将n → m,将r → n中;
④返回重新执行第①步。
注意:如果事先不知道M,N两个数谁大谁小,应(可)在第一步之前增加一个步骤,比较一下两个数的大小,大数在m中,小数在n中。
四、 算法的特性
1、有穷性:一个算法应该包含有限个操作步骤,而不能是无限的。
2、确定性:算法的每个步骤都应该是明确无误的,不能含义模糊,使执行者无所适从。
3、有零个或者多个输入
4、有一个或者多个输出
5、有效性:算法中的每一步都应该能有效地执行,执行算法最后应该能得到确定的结果。
五、 归纳总结
算法的概念;
算法的描述;
算法的特性:
• 有穷性:包含有限的操作步骤
• 确定性:算法中的每一个步骤都应当是确定的
• 有零个或多个输入:输入是指在执行算法时需要从外界取得必要的信息
• 有一个或多个输出:算法的目的是为了求解,“解” 就是输出
• 有效性:算法中的每一个步骤都应当能有效地执行,并得到确定的结果 。
对于程序设计人员来说,我们不仅要会使用现成的算法,还要会设计算法,即要设计出算法中的每一个步骤。
六、 练习
① 用辗转相除法求324和180的最大公约数。
七、板书设计
八、课后记
2021学年1.1.1算法的概念教案: 这是一份2021学年1.1.1算法的概念教案,共3页。
2020-2021学年1.1.1算法的概念教学设计及反思: 这是一份2020-2021学年1.1.1算法的概念教学设计及反思,共4页。教案主要包含了教学目标,重点与难点,教学过程等内容,欢迎下载使用。
人教版新课标B必修31.1.1算法的概念教案: 这是一份人教版新课标B必修31.1.1算法的概念教案,共7页。