高端精品高中数学一轮专题-抽样方法与频率分布直方图(练)试卷
展开
这是一份高端精品高中数学一轮专题-抽样方法与频率分布直方图(练)试卷,共6页。
统计[澄清盲点误点]一、关键点练明1.(分层抽样)某公司生产A,B,C三种不同型号的轿车,其产量之比为2∶3∶4,为检验该公司的产品质量,用分层抽样的方法抽取一个容量为n的样本,若样本中A种型号的轿车比B种型号的轿车少8辆,则n=( )A.96 B.72C.48 D.362.(多选·用样本估计总体)某城市收集并整理了该市2020年1月份至10月份每月最低气温与最高气温(单位:℃)的数据,绘制了如图所示的折线图,已知该市每月的最低气温与当月的最高气温两变量具有较好的线性关系,则根据该折线图,下列结论正确的是( )A.每月的最低气温与当月的最高气温两变量为正相关B.10月份的最高气温不低于5月份的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月份D.最低气温低于0 ℃的月份有4个3.(数字特征)若数据x1,x2,x3,…,xn的平均数=5,方差s2=2,则数据3x1+1,3x2+1,3x3+1,…,3xn+1的平均数和方差分别为( )A.5,2 B.16,2C.16,18 D.16,94.(频率分布直方图)如图是100位居民月均用水量的频率分布直方图,则月均用水量为[2,2.5)范围内的居民数有________人.二、易错点练清1.(易忽略抽样的等可能性)一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为10的样本.已知B层中每个个体被抽到的概率都为,则总体中的个体数为( )A.40 B.60C.80 D.1202.(中位数、众数、平均数的求法不清)为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m,众数为n,平均数为,则m,n,的大小关系为________.(用“<”连接) 1.(多选)为了了解全校1 740名学生的身高情况,从中抽取140名学生进行测量,下列说法正确的是( )A.总体是1 740 B.个体是每一个学生的身高C.样本是140名学生 D.样本量是1402.福利彩票“双色球”中红色球的号码由编号为01,02,…,33的33个个体组成,某彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第6个红色球的编号为( )49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6457 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 A.23 B.09C.02 D.173.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A.0.5 B.0.6C.0.7 D.0.84.(多选)设矩形的长为a,宽为b,其比满足b∶a=≈0.618,这种矩形给人以美感,称为黄金矩形,0.618称为标准值.黄金矩形常应用于工艺品设计中,下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639乙批次:0.618 0.613 0.592 0.622 0.620则下列结论正确的是( )A.甲批次的总体平均数比标准值高B.乙批次的总体平均数比标准值低C.甲、乙批次总体平均数与标准值相比,甲更接近D.两个批次之和的总体平均数与标准值相同5.(多选)CPI是居民消费价格指数的简称,它是一个反映居民家庭一般所购买的消费品和服务项目价格水平变动情况的宏观经济指标.下图为国家统计局发布的2018年2月~2019年2月全国居民消费价格指数(CPI)数据折线图(注:同比是今年第n个月与去年第n个月之比;环比表示连续2个单位周期(比如连续两月)内的量的变化比,环比增长率=(本期数-上期数)/上期数×100%).下列说法正确的是( )A.2019年2月份居民消费价格同比上涨1.5%B.2019年2月份居民消费价格环比上涨1.0%C.2018年6月份居民消费价格环比下降0.1%D.2018年11月份居民消费价格同比下降0.3%6.(多选)在某次高中学科知识竞赛中,对4 000名考生的参赛成绩进行统计,可得到如图所示的频率分布直方图,其中分组的区间为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],60分以下视为不及格,若同一组中数据用该组区间中间值作代表值,则下列说法中正确的是( )A.成绩在[70,80)的考生人数最多B.不及格的考生人数为1 000C.考生竞赛成绩的平均分约为70.5分D.考生竞赛成绩的中位数约为75分7.(2020·全国卷Ⅱ)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1 200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1 600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )A.10名 B.18名C.24名 D.32名8.高铁、扫码支付、共享单车、网购并称中国“新四大发明”,近日对全国100个城市的共享单车和扫码支付的使用人数进行大数据分析,其中共享单车使用的人数分别为x1,x2,x3,…,x100,它们的平均数为,方差为s2;其中扫码支付使用的人数分别为3x1+2,3x2+2,3x3+2,…,3x100+2,它们的平均数为,方差为s′2,则,s′2分别为( )A.3+2,3s2+2 B.3,3s2C.3+2,9s2 D.3+2,9s2+29.某校对高三年级1 600名男女学生的视力状况进行调查,现用分层抽样的方法抽取一个容量是200的样本,已知样本中女生比男生少10人,则该校高三年级的女生人数是________.10.高三某宿舍共8人,在一次体检中测得其中7个人的体重分别为60,55,60,55,65,50,50(单位:千克),其中一人因故未测,已知该同学的体重在50~60千克之间,则此次体检中该宿舍成员体重的中位数为55的概率为________.11.已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为________、________.12.为了了解某校高三美术生的身体状况,抽查了部分美术生的体重,将所得数据整理后,作出了如图所示的频率分布直方图.已知图中从左到右的前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,则被抽查的美术生的人数是________.13.某校1 200名高三年级学生参加了一次数学测验(满分为100分),为了分析这次数学测验的成绩,从这1 200人的数学成绩中随机抽取200人的成绩绘制成如下的统计表,请根据表中提供的信息解决下列问题:成绩分组频数频率平均分[0,20)30.01516[20,40)ab32.1[40,60)250.12555[60,80)c0.574[80,100]620.3188(1)求a,b,c的值;(2)如果从这1 200名学生中随机抽取一人,试估计这名学生该次数学测验及格的概率P(注:60分及60分以上为及格);(3)试估计这次数学测验的年级平均分. 14.为了了解甲、乙两个工厂生产的轮胎的宽度是否达标,从两厂各随机选取了10个轮胎,将每个轮胎的宽度(单位:mm)记录下来并绘制出如下的折线图:(1)分别计算甲、乙两厂提供的10个轮胎宽度的平均值;(2)若轮胎的宽度在[194,196]内,则称这个轮胎是标准轮胎.试比较甲、乙两厂分别提供的10个轮胎中所有标准轮胎宽度的方差的大小,根据两厂的标准轮胎宽度的平均水平及其波动情况,判断这两个工厂哪个的轮胎相对更好.
相关试卷
这是一份高端精品高中数学一轮专题-高端精品高中数学一轮专题-直线与圆的位置关系(练)试卷,共4页。试卷主要包含了已知直线等内容,欢迎下载使用。
这是一份高端精品高中数学一轮专题-椭圆(练)试卷,共5页。
这是一份高端精品高中数学一轮专题-二项分布与正态分布(练)(带答案)试卷,共8页。