高端精品高中数学一轮专题-圆锥曲线 审题上——4大策略找到解题突破口教案(讲)
展开
这是一份高端精品高中数学一轮专题-圆锥曲线 审题上——4大策略找到解题突破口教案(讲),共10页。
解析几何研究的问题是几何问题,研究的方法是代数法(坐标法).因此,求解解析几何问题最大的思维难点是转化,即几何条件代数化.如何在解析几何问题中实现代数式的转化,找到常见问题的求解途径,是突破解析几何问题难点的关键所在.突破解析几何难题,先从找解题突破口入手.
策略一 垂直关系的转化
[典例] 如图所示,已知圆C:x2+y2-2x+4y-4=0,问:是否存在斜率为1的直线l,使l与圆C交于A,B两点,且以AB为直径的圆过原点?若存在,求出直线l的方程;若不存在,请说明理由.
[名师微点]
(1)以AB为直径的圆过原点等价于eq \(OA,\s\up7(―→))⊥eq \(OB,\s\up7(―→)),而eq \(OA,\s\up7(―→))⊥eq \(OB,\s\up7(―→))又可以“直译”为x1x2+y1y2=0,可以看出,解此类解析几何问题的总体思路为“直译”,然后对个别难以“直译”的条件先进行“转化”,将“困难、难翻译”的条件通过平面几何知识“转化”为“简单、易翻译”的条件后再进行“直译”,最后联立“直译”的结果解决问题.
(2)几何关系“直角”坐标化的转化方式
①点B在以线段F1F2为直径的圆上;
②eq \(F1B,\s\up7(―→))·eq \(F2B,\s\up7(―→))=0;
③kF1B·kF2B=-1;
④勾股定理.
以上关系可相互转化.
[针对训练]
1.已知椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)过点eq \b\lc\(\rc\)(\a\vs4\al\c1(1,\f(3,2))),且其离心率为eq \f(1,2),过坐标原点O作两条互相垂直的射线与椭圆C分别相交于M,N两点.
(1)求椭圆C的方程;
(2)是否存在圆心在原点的定圆与直线MN总相切?若存在,求定圆的方程;若不存在,请说明理由.
策略二 角平分线条件的转化
[典例] 已知动圆过定点A(4,0),且在y轴上截得的弦MN的长为8.
(1)求动圆圆心的轨迹C的方程;
(2)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,求证:直线l过定点.
[名师微点]
本题前面的三种解法属于比较常规的解法,主要是设点,设直线方程,联立方程,并借助判别式、根与系数的关系等知识解题,计算量较大.解法四巧妙地运用了抛物线的参数方程进行设点,避免了联立方程组,计算相对简单,但是解法二和解法四中含有两个参数y1,y2,因此判定直线过定点时,要注意将直线的方程变为特殊的形式.
[针对训练]
2.椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)经过点(eq \r(2),0),左、右焦点分别是F1,F2,P点在椭圆上,且满足∠F1PF2=90°的P点只有两个.
(1)求椭圆C的方程;
(2)过F2且不垂直于坐标轴的直线l交椭圆C于A,B两点,在x轴上是否存在一点N(n,0),使得∠ANB的角平分线是x轴?若存在,求出n;若不存在,请说明理由.
策略三 弦长条件的转化
[典例] 如图所示,已知椭圆G:eq \f(x2,2)+y2=1,与x轴不重合的直线l经过左焦点F1,且与椭圆G相交于A,B两点,弦AB的中点为M,直线OM与椭圆G相交于C,D两点.
(1)若直线l的斜率为1,求直线OM的斜率;
(2)是否存在直线l,使得|AM|2=|CM||DM|成立?若存在,求出直线l的方程;若不存在,请说明理由.
[名师微点]
本题(2)的核心在于转化|AM|2=|CM||DM|中弦长的关系.由|CM|=|OC|-|OM|,|DM|=|OD|+|OM|,又|OC|=|OD|,则|AM|2=|OC|2-|OM|2.又|AM|=eq \f(1,2)|AB|,|OC|=eq \f(1,2)|CD|,因此|AB|2=|CD|2-4|OM|2,转化为弦长|AB|,|CD|和|OM|三者之间的数量关系,易计算.
[针对训练]
3.已知抛物线C:y2=2px(p>0)的焦点为F,Qeq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),\r(t)))在抛物线C上,且|QF|=eq \f(3,2).
(1)求抛物线C的方程及t的值;
(2)若过点M(0,t)的直线l与抛物线C相交于A,B两点,N为AB的中点,O是坐标原点,且S△AOB=eq \r(3)S△MON,求直线l的方程.
策略四 面积条件的转化
[典例] 设椭圆的中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与椭圆交于E,F两点,求四边形AEBF的面积的最大值.
[名师微点]
如果利用常规方法理解为S四边形AEBF=S△AEF+S△BEF=eq \f(1,2)|EF|·(d1+d2)(其中d1,d2分别表示点A,B到直线EF的距离),则需要通过联立直线与椭圆的方程,先由根与系数的关系求出|EF|的弦长,再表示出两个点线距,其过程很复杂.而通过分析,若把四边形AEBF的面积拆成两个小三角形——△ABE和△ABF的面积之和,则更为简单.因为直线AB的方程及其长度易求出,故只需表示出点E与点F到直线AB的距离即可.
[针对训练]
4.已知椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)右焦点F(1,0),离心率为eq \f(\r(2),2),过F作两条互相垂直的弦AB.
(1)求椭圆的标准方程;
(2)求以A,B,C,D为顶点的四边形的面积的取值范围.
[总结规律·快速转化]
做数学,就是要学会翻译,把文字语言、符号语言、图形语言、表格语言相互转换,我们要学会对解析几何问题中涉及的所有对象逐个理解、表示、整理,在理解题意的同时,牢记解析几何的核心方法是“用代数方法研究几何问题”,核心思想是“数形结合”,牢固树立“转化”意识,那么就能顺利破解解析几何的有关问题.附几种常见几何条件的转化,以供参考:
1.平行四边形条件的转化
2.直角三角形条件的转化
3.等腰三角形条件的转化
4.菱形条件的转化
5.圆条件的转化
6.角条件的转化
几何性质
代数实现
(1)对边平行
斜率相等,或向量平行
(2)对边相等
长度相等,横(纵)坐标差相等
(3)对角线互相平分
中点重合
几何性质
代数实现
(1)两边垂直
斜率乘积为-1,或向量数量积为0
(2)勾股定理
两点间的距离公式
(3)斜边中线性质(中线等于斜边一半)
两点间的距离公式
几何性质
代数实现
(1)两边相等
两点间的距离公式
(2)两角相等
底边水平或竖直时,两腰斜率相反
(3)三线合一(垂直且平分)
垂直:斜率或向量
平分:中点坐标公式
几何性质
代数实现
(1)对边平行
斜率相等,或向量平行
(2)对边相等
长度相等,横(纵)坐标差相等
(3)对角线互相垂直平分
垂直:斜率或向量
平分:中点坐标公式、中点重合
几何性质
代数实现
(1)点在圆上
点与直径端点向量数量积为零
(2)点在圆外
点与直径端点向量数量积为正数
(3)点在圆内
点与直径端点向量数量积为负数
几何性质
代数实现
(1)锐角、直角、钝角
角的余弦(向量数量积)的符号
(2)倍角、半角、平分角
角平分线性质,定理(夹角、到角公式)
(3)等角(相等或相似)
比例线段或斜率
相关教案
这是一份新高考数学一轮复习讲练教案8.8 第1课时 4大策略找到解题突破口(含解析),共17页。
这是一份高中数学高考第八节 第1课时 审题上——4大策略找到解题突破口 教案,共17页。
这是一份高端精品高中数学一轮专题-椭圆(讲)教案,共9页。