终身会员
搜索
    上传资料 赚现金
    高端精品高中数学一轮专题-椭圆(讲)教案
    立即下载
    加入资料篮
    高端精品高中数学一轮专题-椭圆(讲)教案01
    高端精品高中数学一轮专题-椭圆(讲)教案02
    高端精品高中数学一轮专题-椭圆(讲)教案03
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高端精品高中数学一轮专题-椭圆(讲)教案

    展开
    这是一份高端精品高中数学一轮专题-椭圆(讲)教案,共9页。

    1.结合椭圆的定义,考查应用能力,凸显逻辑推理、数学运算的核心素养.
    2.结合椭圆的定义、简单的几何性质、几何图形,会求椭圆方程及解与几何性质有关的问题,凸显数学运算、直观想象的核心素养.
    [理清主干知识]
    1.椭圆的定义
    平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.
    集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数.
    (1)若a>c,则集合P为椭圆.
    (2)若a=c,则集合P为线段.
    (3)若a2.椭圆的标准方程和几何性质
    3.常用结论
    (1)过椭圆焦点垂直于长轴的弦是最短的弦,长为eq \f(2b2,a),过焦点最长弦为长轴.
    (2)过原点最长弦为长轴长2a,最短弦为短轴长2b.
    (3)与椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)有共同焦点的椭圆方程为eq \f(x2,a2+λ)+eq \f(y2,b2+λ)=1(λ>-b2).
    (4)焦点三角形:椭圆上的点P(x0,y0)与两焦点F1,F2构成的△PF1F2叫做焦点三角形.若r1=|PF1|,r2=|PF2|,∠F1PF2=θ,△PF1F2的面积为S,则在椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)中:
    ①当r1=r2,即点P为短轴端点时,θ最大;
    ②S=eq \f(1,2)|PF1||PF2|sin θ=c|y0|,当|y0|=b,即点P为短轴端点时,S取得最大值,最大值为bc;
    ③△PF1F2的周长为2(a+c).
    考点一 椭圆定义的应用
    考法(一) 利用定义求轨迹方程
    [例1] 已知两圆C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,动圆M在圆C1内部且和圆C1相内切,和圆C2相外切,则动圆圆心M的轨迹方程为( )
    A.eq \f(x2,64)-eq \f(y2,48)=1 B.eq \f(y2,64)+eq \f(x2,48)=1
    C.eq \f(x2,48)-eq \f(y2,64)=1 D.eq \f(x2,64)+eq \f(y2,48)=1
    考法(二) 求解“焦点三角形”问题
    [例2] 椭圆C:eq \f(x2,a2)+y2=1(a>1)的左、右焦点分别为F1,F2,P为椭圆上异于端点的任意一点,PF1,PF2的中点分别为M,N,O为坐标原点,四边形OMPN的周长为2eq \r(3),则△PF1F2的周长是( )
    A.2(eq \r(2)+eq \r(3)) B.4+2eq \r(3)
    C.eq \r(2)+eq \r(3) D.eq \r(2)+2eq \r(3)
    考法(三) 利用定义求最值
    [例3] 设点P是椭圆C:eq \f(x2,8)+eq \f(y2,4)=1上的动点,F为椭圆C的右焦点,定点A(2,1),则|PA|+|PF|的取值范围是______________.
    [方法技巧] 椭圆定义应用的类型及方法
    [针对训练]
    1.(多选)已知P是椭圆eq \f(x2,9)+eq \f(y2,4)=1上一点,椭圆的左、右焦点分别为F1,F2,且cs∠F1PF2=eq \f(1,3),则( )
    A.△PF1F2的周长为12 B.S△PF1F2=2eq \r(2)
    C.点P到x轴的距离为eq \f(2\r(10),5) D.eq \(PF1,\s\up7(―→))·eq \(PF2,\s\up7(―→))=2
    2.已知椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的短轴长为2,上顶点为A,左顶点为B,左、右焦点分别是F1,F2,且△F1AB的面积为eq \f(2-\r(3),2),点P为椭圆上的任意一点,则eq \f(1,|PF1|)+eq \f(1,|PF2|)的取值范围是________.
    考点二 椭圆的标准方程
    [例1] 过点(eq \r(3),-eq \r(5)),且与椭圆eq \f(y2,25)+eq \f(x2,9)=1有相同焦点的椭圆的标准方程为( )
    A.eq \f(x2,20)+eq \f(y2,4)=1 B.eq \f(x2,2\r(5))+eq \f(y2,4)=1
    C.eq \f(y2,20)+eq \f(x2,4)=1 D.eq \f(x2,4)+eq \f(y2,2\r(5))=1
    [例2] 如图,已知椭圆C的中心为原点O,F(-5,0)为C的左焦点,P为C上一点,满足|OP|=|OF|且|PF|=6,则椭圆C的标准方程为( )
    A.eq \f(x2,36)+eq \f(y2,16)=1 B.eq \f(x2,40)+eq \f(y2,15)=1
    C.eq \f(x2,49)+eq \f(y2,24)=1 D.eq \f(x2,45)+eq \f(y2,20)=1
    [方法技巧] 求椭圆标准方程的2种常用方法
    [针对训练]
    1.若直线x-2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为( )
    A.eq \f(x2,5)+y2=1 B.eq \f(x2,4)+y2=1
    C.eq \f(x2,5)+y2=1或eq \f(x2,4)+eq \f(y2,5)=1 D.以上答案都不正确
    2.一个椭圆的中心在原点,焦点F1,F2在x轴上,P(2,eq \r(3))是椭圆上一点,且|PF1|,|F1F2|,|PF2|成等差数列,则椭圆的方程为( )
    A.eq \f(x2,8)+eq \f(y2,6)=1 B.eq \f(x2,16)+eq \f(y2,6)=1
    C.eq \f(x2,8)+eq \f(y2,4)=1 D.eq \f(x2,16)+eq \f(y2,4)=1
    考点三 椭圆的几何性质
    考法(一) 求椭圆的离心率
    [例1] (1)已知椭圆方程为eq \f(x2,a)+eq \f(y2,b)=1,且a,b,a+b成等差数列,a,b,ab成等比数列,则此椭圆的离心率为( )
    A.eq \f(1,2) B.eq \f(\r(3),3)
    C.eq \f(\r(2),2) D.eq \f(\r(3),2)
    (2)过椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1eq \b\lc\(\rc\)(\a\vs4\al\c1(a>b>0))的左焦点F的直线过C的上端点B,且与椭圆相交于点A,若eq \(BF,\s\up7(―→))=3eq \(FA,\s\up7(―→)),则C的离心率为( )
    A.eq \f(1,3) B.eq \f(\r(3),3)
    C.eq \f(\r(3),2) D.eq \f(\r(2),2)
    [方法技巧]
    求椭圆离心率的3种方法
    (1)直接求出a,c来求解e.通过已知条件列方程组,解出a,c的值.
    (2)构造a,c的齐次式,解出e.由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解.
    (3)通过取特殊值或特殊位置,求出离心率.
    [提醒] 在解关于离心率e的二次方程时,要注意利用椭圆的离心率e∈(0,1)进行根的取舍,否则将产生增根.
    考法(二) 求椭圆的离心率的范围
    [例2] (1)已知椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1 (a>b>0),直线y=x与椭圆相交于A,B两点,若椭圆上存在异于A,B两点的点P使得kPA·kPB∈eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,3),0)),则离心率e的取值范围为( )
    A.eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(\r(6),3))) B.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(6),3),1))
    C.eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(2,3))) D.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2,3),1))
    (2)已知椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的右焦点为F,短轴的一个端点为P,直线l:4x-3y=0与椭圆C相交于A,B两点.若eq \b\lc\|\rc\|(\a\vs4\al\c1(AF))+eq \b\lc\|\rc\|(\a\vs4\al\c1(BF))=6,点P到直线l的距离不小于eq \f(6,5),则椭圆离心率的取值范围是( )
    A.eq \b\lc\(\rc\](\a\vs4\al\c1(0,\f(5,9))) B.eq \b\lc\(\rc\](\a\vs4\al\c1(0,\f(\r(3),2)))
    C.eq \b\lc\(\rc\](\a\vs4\al\c1(0,\f(\r(5),3))) D.eq \b\lc\(\rc\](\a\vs4\al\c1(\f(1,3),\f(\r(3),2)))
    [方法技巧] 求椭圆离心率范围的2种方法
    考法(三) 与椭圆性质有关的最值或范围问题
    [例3] 如图,焦点在x轴上的椭圆eq \f(x2,4)+eq \f(y2,b2)=1的离心率e=eq \f(1,2),F,A分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,则eq \(PF,\s\up7(―→))·eq \(PA,\s\up7(―→))的最大值为( )
    A.1 B.2eq \r(3)
    C.4 D.4eq \r(3)
    [方法技巧]
    与椭圆有关的最值或范围问题的求解方法
    (1)利用数形结合、几何意义,尤其是椭圆的性质,求最值或取值范围.
    (2)利用函数,尤其是二次函数求最值或取值范围.
    (3)利用不等式,尤其是基本不等式求最值或取值范围.
    (4)利用一元二次方程的判别式求最值或取值范围.
    [提醒] 求解与椭圆几何性质有关的参数问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系.
    [针对训练]
    1.(多选)已知椭圆C:16x2+25y2=400,则下述正确的是( )
    A.椭圆C的长轴长为10
    B.椭圆C的两个焦点分别为(0,-3)和(0,3)
    C.椭圆C的离心率等于eq \f(3,5)
    D.若过椭圆的焦点且与长轴垂直的直线l与椭圆C交于P,Q,则|PQ|=eq \f(32,5)
    2.已知椭圆E:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0),直线l过焦点且倾斜角为eq \f(π,4),以椭圆的长轴为直径的圆截l所得的弦长等于椭圆的焦距,则椭圆的离心率为( )
    A.eq \f(\r(2),3) B.eq \f(\r(3),3)
    C.eq \f(\r(5),3) D.eq \f(\r(6),3)
    3.已知F1,F2分别是椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的左、右焦点,若椭圆C上存在点P使∠F1PF2为钝角,则椭圆C的离心率的取值范围是( )
    A.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(2),2),1)) B.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),1))
    C.eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(\r(2),2))) D.eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(1,2)))
    一、创新思维角度——融会贯通学妙法
    椭圆中的垂径定理:kAB·kOM=-eq \f(n,m).
    [应用体验]
    1.已知椭圆E:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的右焦点F(3,0),过点F的直线交E于A,B两点,若AB的中点坐标为(1,-1),则E的方程为( )
    A.eq \f(x2,45)+eq \f(y2,36)=1 B.eq \f(x2,36)+eq \f(y2,27)=1
    C.eq \f(x2,27)+eq \f(y2,18)=1 D.eq \f(x2,18)+eq \f(y2,9)=1
    2.如果AB是椭圆eq \f(x2,a2)+eq \f(y2,b2)=1的任意一条与x轴不垂直的弦,O为椭圆的中心,e为椭圆的离心率,M为AB的中点,则kAB·kOM的值为( )
    A.e-1 B.1-e
    C.e2-1 D.1-e2
    二、创新考查方式——领悟高考新动向
    1.阿基米德(公元前287年—公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的对称轴为坐标轴,焦点在y轴上,且椭圆C的离心率为eq \f(\r(7),4),面积为12π,则椭圆C的方程为( )
    A.eq \f(x2,9)+eq \f(y2,16)=1 B.eq \f(x2,3)+eq \f(y2,4)=1
    C.eq \f(x2,18)+eq \f(y2,32)=1 D.eq \f(x2,4)+eq \f(y2,36)=1
    2.“嫦娥四号”探测器于2019年1月在月球背面成功着陆.如图所示,假设“嫦娥四号”卫星沿地月转移轨道飞向月球后,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行,若用e1和e2分别表示椭圆轨道Ⅰ和Ⅱ的离心率,则( )
    A.e1>e2
    B.e1C.e1=e2
    D.e1与e2的大小关系不能确定
    3.如图,点A,B分别是椭圆eq \f(x2,25)+eq \f(y2,b2)=1(0A.eq \f(\r(7),4) B.eq \f(4\r(7),3)
    C.eq \f(\r(7),3) D.eq \f(3\r(7),4)
    4.(多选)如图,记椭圆eq \f(x2,25)+eq \f(y2,9)=1,eq \f(y2,25)+eq \f(x2,9)=1内部重叠区域的边界为曲线C,P是曲线C上的任意一点,则下列命题中正确的是( )
    A.P到F1(-4,0),F2(4,0),E1(0,-4),E2(0,4)四点的距离之和为定值
    B.曲线C关于直线y=x,y=-x均对称
    C.曲线C所围区域的面积必小于36
    D.曲线C的总长度不大于6π
    标准方程
    eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)
    eq \f(y2,a2)+eq \f(x2,b2)=1(a>b>0)
    图形
    性 质
    范围
    -a≤x≤a,-b≤y≤b
    -b≤x≤b,-a≤y≤a
    对称性
    对称轴:坐标轴;对称中心:(0,0)
    顶点
    A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)
    A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)
    离心率
    e=eq \f(c,a),且e∈(0,1)
    a,b,c的关系
    c2=a2-b2
    求方程
    通过对题设条件分析、转化后,能够明确动点满足椭圆的定义,便可直接求解其轨迹方程
    焦点三角形问题
    利用定义求焦点三角形的周长和面积.解决焦点三角形问题常利用椭圆的定义、正弦定理或余弦定理,其中|PF1|+|PF2|=2a两边平方是常用技巧
    求最值
    抓住|PF1|与|PF2|之和为定值,可联系到利用基本不等式求|PF1|·|PF2|的最值;利用定义|PF1|+|PF2|=2a转化或变形,借助三角形性质求最值
    定义法
    根据椭圆的定义,确定a2,b2的值,结合焦点位置可写出椭圆方程
    待定系
    数法
    若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出a,b;若焦点位置不明确,则需要分焦点在x轴上和y轴上两种情况讨论,也可设椭圆的方程为Ax2+By2=1(A>0,B>0,A≠B)
    方法
    解读
    适合题型
    几何法
    利用椭圆的几何性质,设P(x0,y0)为椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)上一点,则|x0|≤a,a-c≤|PF1|≤a+c等,建立不等关系,或者根据几何图形的临界情况建立不等关系
    题设条件有明显的几何关系
    直接法
    根据题目中给出的条件或根据已知条件得出不等关系,直接转化为含有a,b,c的不等关系式
    题设条件直接有不等关系
    相关教案

    高端精品高中数学一轮专题-直线与直线方程(讲)教案: 这是一份高端精品高中数学一轮专题-直线与直线方程(讲)教案,共11页。教案主要包含了知识清单,考点分类剖析,规律方法,变式探究,易错提醒,典例10,典例11,总结提升等内容,欢迎下载使用。

    高端精品高中数学一轮专题-椭圆(讲)(带答案)教案: 这是一份高端精品高中数学一轮专题-椭圆(讲)(带答案)教案,共13页。

    高端精品高中数学一轮专题-抛物线(讲)教案: 这是一份高端精品高中数学一轮专题-抛物线(讲)教案,共8页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map