高端精品高中数学一轮专题-直线与圆的位置关系(讲)(带答案)教案
展开
这是一份高端精品高中数学一轮专题-直线与圆的位置关系(讲)(带答案)教案,共17页。教案主要包含了知识清单,考点分类剖析,规律方法,变式探究,方法点晴,总结提升,典例10,典例11等内容,欢迎下载使用。
直线与圆的位置关系新课程考试要求1.掌握圆的标准方程与一般方程.2.会解决直线与圆的位置关系的问题,会判断圆与圆的位置关系.3.理解数形结合、用代数方法处理几何问题的思想.核心素养本节涉及直观想象、数学运算、数学建模、逻辑推理、数学抽象、数据分析等核心数学素养.高考预测(1)高考对圆的方程的考查,一般是以小题的形式出现,也有与向量、圆锥曲线等相结合的问题.纵观近几年的高考试题,主要考查以下几个方面:一是考查圆的方程,要求利用待定系数法求出圆的方程,并结合圆的几何性质解决相关问题;二是考查直线与圆的位置关系,高考要求能熟练地解决圆的切线问题,弦长问题是高考热点,其中利用由圆心距、半径与半弦长构成的直角三角形,是求弦长问题的关键.三是判断圆与圆的位置关系,确定公共弦所在的直线方程.近几年多与圆锥曲线问题综合考查.(2)主要考查一是直线与圆的位置关系,高考要求能熟练地解决圆的切线问题,弦长问题是高考热点,其中利用由圆心距、半径与半弦长构成的直角三角形,是求弦长问题的关键.二是判断圆与圆的位置关系,确定公共弦所在的直线方程.近几年多与圆锥曲线问题综合考查.【知识清单】知识点1.圆的方程1.圆的定义:在平面内,到定点的距离等于定长的点的轨迹叫做圆.2.圆的标准方程(1) 若圆的圆心为C(a,b),半径为r,则该圆的标准方程为:.(2) 方程表示圆心为C(a,b),半径为r的圆.3.圆的一般方程(1)任意一个圆的方程都可化为:.这个方程就叫做圆的一般方程.(2) 对方程:.①若,则方程表示以,为圆心,为半径的圆;②若,则方程只表示一个点,;③若,则方程不表示任何图形.4.点与⊙C的位置关系(1)|AC|<r⇔点A在圆内⇔;(2)|AC|=r⇔点A在圆上⇔;(3)|AC|>r⇔点A在圆外⇔.知识点2.圆的方程综合应用1. 圆的标准方程为:2.圆的一般方程.:().3.点到直线的距离:.知识点3.直线与圆相切1.直线与圆相切:直线与圆有且只有一个公共点;2.几何法:圆心到直线的距离等于半径,即;3.代数法:,方程组有一组不同的解.知识点4.直线与圆相交及弦长1.直线与圆相交:直线与圆有两个公共点;2.几何法:圆心到直线的距离小于半径,即;3.代数法:,方程组有两组不同的解.知识点5.圆与圆的位置关系设两圆的圆心分别为、,圆心距为,半径分别为、().(1)两圆相离:无公共点;,方程组无解.(2)两圆外切:有一个公共点;,方程组有一组不同的解.(3)两圆相交:有两个公共点;,方程组有两组不同的解.(4)两圆内切:有一公共点;,方程组有一组不同的解.(5)两圆内含:无公共点;,方程组无解.特别地,时,为两个同心圆.【考点分类剖析】考点一 :求圆的方程【典例1】已知圆心为的圆与轴相切,则该圆的标准方程是( )A. B.C. D.【答案】B【详解】根据题意知圆心为,半径为,故圆方程为:.故选:B.【典例2】已知圆过,,,(1)求圆的方程;(2)判断和圆的位置关系.【答案】(1);(2)点在圆外.【详解】(1)设圆的方程为,因为圆过,,,则,解得,所以所求圆的方程为;(2)因为,所以点在圆外.【规律方法】求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式. 【变式探究】1.古希腊数学家阿波罗尼奧斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,设A(﹣3,0),B(3,0),动点M满足=2,则动点M的轨迹方程为( )A.(x﹣5)2+y2=16 B.x2+(y﹣5)2=9C.(x+5)2+y2=16 D.x2+(y+5)2=9【答案】A【解析】设,由,得,可得:(x+3)2+y2=4(x﹣3)2+4y2,即x2﹣10x+y2+9=0整理得,故动点的轨迹方程为.选A.【方法点晴】求轨迹方程的常见方法有:①直接法,设出动点的坐标,根据题意列出关于的等式即可;②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把分别用第三个变量表示,消去参数即可;④逆代法,将代入.本题就是利用方法④求的轨迹方程的.2.已知圆C的圆心在x轴的正半轴上,点在圆C上,且圆心到直线的距离为,则圆C的方程为__________.【答案】【解析】设,则,故圆C的方程为【总结提升】1.确定圆的方程常用待定系数法,其步骤为:一根据题意选择标准方程或一般方程;二是根据题设条件列出方程组;三是由方程组求出待定的系数,代入所设的圆的方程;2.在求圆的方程时,常用到圆的以下几个性质:一是圆心在过切点且与切线垂直的直线上;二是圆心在任一弦的中垂线上;3.解方程组时,把所求的值代入检验一下是否正确.考点二 : 圆的方程综合应用【典例3】已知圆,直线,若直线与轴交于点,过直线上一点做圆的切线,切点为,若,则点P的轨迹方程是____________;的取值范围 是____________.【答案】 【详解】圆,直线与轴相交于点设,由可得,即,满足的点P的轨迹是一个圆,所以问题转化为直线与圆有公共点所以,,所以实数的取值范围是:故答案为:;【典例4】设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长之比为3:1;③圆心到直线的距离为,求该圆的方程.【答案】或【解析】设圆心为,半径为r,由条件①:.由条件②:,从而有:.由条件③:.解方程组可得:或,所以.故所求圆的方程是或. 【总结提升】1.求圆的方程,采用待定系数法:①若已知条件与圆的圆心和半径有关,可设圆的标准方程.②若已知条件没有明确给出圆的圆心和半径,可选择圆的一般方程.2.在求圆的方程时,常用到圆的以下几何性质:①圆心在过切点且与切线垂直的直线上;②圆心在任一弦的垂直平分线上.【变式探究】1.若圆C经过坐标原点和点(4,0),且与直线y=1相切,则圆C的方程是_________.【答案】(x-2)2+(y+)2=【解析】设圆的圆心坐标,半径为,因为圆经过坐标原点和点,且与直线相切,所以,解得,所求圆的方程为,故答案为.2.已知直线被圆截得的弦长为,则的最大值为________.【答案】【解析】圆可化为,则圆心为,半径为,
又因为直线被圆截得的弦长为,
所以直线过圆心,即,化为 ,
,当且仅当时取等号,
的最大值为,故答案为.考点三 :直线与圆相切【典例5】若斜率为的直线与轴交于点,与圆相切于点,则____________.【答案】【详解】设直线的方程为,则点,由于直线与圆相切,且圆心为,半径为,则,解得或,所以,因为,故.故答案为:.【典例6】已知圆,则过点作圆的切线的方程为___________.【答案】或【详解】圆的圆心坐标,半径,当切线的斜率不存在时,,显然到圆心的距离等于半径,故而是圆的一条切线;当切线的斜率存在时,设斜率为,,即:,由圆心到切线的距离等于半径,得,解得,故切线的方程为,故答案为:或【规律方法】判断直线与圆的位置关系常见的方法(1)几何法:利用d与r的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.提醒:上述方法中最常用的是几何法.【变式探究】1.一条光线从点射出,经轴反射后与圆相切,则反射光线所在直线的斜率为( )A.或 B.或 C.或 D.或【答案】D【解析】由光的反射原理知,反射光线的反向延长线必过点,设反射光线所在直线的斜率为,则反身光线所在直线方程为:,即:.又因为光线与圆相切,所以,,整理:,解得:,或,故选D.2.已知P是直线l: 上一动点,过点P作圆C:的两条切线,切点分别为A、B.则四边形PACB面积的最小值为___________.【答案】2【解析】由题意得:圆的方程为:∴圆心为,半径为2,又∵四边形PACB的面积,所以当PC最小时,四边形PACB面积最小.将代入点到直线的距离公式,,故四边形PACB面积的最小值为2.故答案为:2【总结提升】圆的切线方程的两种求法(1)代数法:设切线方程为y-y0=k(x-x0),与圆的方程组成方程组,消元后得到一个一元二次方程,然后令判别式Δ=0进而求得k.(2)几何法:设切线方程为y-y0=k(x-x0),利用点到直线的距离公式表示出圆心到切线的距离d,然后令d=r,进而求出k.考点四:直线与圆相交及弦长【典例7】已知圆M的方程为,过点的直线l与圆M相交的所有弦中,弦长最短的弦为,弦长最长的弦为,则四边形的面积为( )A.30 B.40 C.60 D.80【答案】B【解析】圆M的标准方程为,即圆是以为圆心,5为半径的圆,且由,即点在圆内,则最短的弦是以为中点的弦,所以,所以,过最长的弦为直径,所以,且,故而.故选:B.【典例8】已知圆,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A.1 B.2C.3 D.4【答案】B【解析】圆化为,所以圆心坐标为,半径为,设,当过点的直线和直线垂直时,圆心到过点的直线的距离最大,所求的弦长最短,此时根据弦长公式得最小值为.故选:B.【总结提升】1.弦长的两种求法(1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长.(2)几何方法:若弦心距为d,圆的半径长为r,则弦长l=2.【变式探究】1.已知直线:与圆交于,两点,过,分别作的垂线与轴交于,两点,若,则__________.【答案】4【解析】因为,且圆的半径为,所以圆心到直线的距离为,则由,解得,代入直线的方程,得,所以直线的倾斜角为,由平面几何知识知在梯形中,.故答案为42.直线与圆相交于A,B两点,弦长的最小值为________,若的面积为,则m的值为_________.【答案】2 【解析】直线恒过圆内的定点,,圆心C到直线的距离,所以,即弦长的最小值为2;由,即或.若,则圆心到弦AB的距离 ,故不符合题意;当时,圆心到直线的距离为,设弦AB的中点为N,又,故,即直线的倾斜角为,则m的值为 .故答案为2,考点五:圆与圆的位置关系【典例9】平面直角坐标系xOy中,已知圆C1:(x-4)2+(y-8)2=1,圆C2:(x-6)2+(y+6)2=9,若圆心在x轴上的圆C同时平分圆C1和圆C2的圆周,则圆C的方程是________.【答案】【详解】解:圆C平分圆C1等价于圆C与圆的公共弦是圆的直径.同理圆C与圆的公共弦是圆的直径设圆C的圆心为,半径为,则,所以,即,解得所以圆C的方程为.故答案为:【典例10】在平面直角坐标系xOy中,已知圆.过原点的动直线l与圆M交于A,B两点若以线段AB为直径的圆与以M为圆心MO为半径的始终无公共点,则实数a的取值范围是________.【答案】【解析】圆的圆心为,半径.设以线段为直径的圆的圆心为,要使“以线段为直径的圆与以为圆心为半径的始终无公共点”,则两圆内含.即,即恒成立,即,由基本不等式有,故,所以,即,也即,解得.故填:.【规律方法】1.判断两圆位置关系的方法常用几何法,即用两圆圆心距与两圆半径和与差的绝对值的关系,一般不用代数法.2.两圆公共弦长的求法两圆公共弦长,先求出公共弦所在直线的方程,转化为直线与圆相交的弦长问题.【变式探究】1.已知圆的圆心到直线的距离为,则圆与圆的位置关系是( )A.相交 B.内切 C.外切 D.相离【答案】B【解析】圆的圆心为,半径为.圆心到直线的距离为,解得.∴圆的圆心为,半径为2,圆的标准方程为:,圆心坐标为,半径,圆心距,∴两圆相内切,故选:B.2.与圆,都相切的直线有( )A.条 B.条 C.条 D.条【答案】A【解析】由于圆可化为,则圆的圆心为,半径为圆可化为,则圆的圆心为,半径为所以圆,的圆心距则两个圆内切,所以它们只有1条公切线,故选:A【总结提升】比较两圆半径的和、差与两圆圆心距的大小可得两圆的位置关系;两圆方程相减即得公共弦方程;公共弦长要通过解直角三角形获得.考点六 : 直线、圆的位置关系的综合应用【典例11】【多选题】已知点在圆上,点、,则( )A.点到直线的距离小于B.点到直线的距离大于C.当最小时,D.当最大时,【答案】ACD【详解】圆的圆心为,半径为,直线的方程为,即,圆心到直线的距离为,所以,点到直线的距离的最小值为,最大值为,A选项正确,B选项错误;如下图所示:当最大或最小时,与圆相切,连接、,可知,,,由勾股定理可得,CD选项正确.故选:ACD.【典例12】在平面直角坐标系中,己知圆,且圆被直线截得的弦长为2.(1)求圆的标准方程;(2)若圆的切线在轴和轴上的截距相等,求切线的方程;【答案】(1);(2)或或或;【解析】(1)圆方程可整理为: 圆的圆心坐标为,半径圆心到直线的距离:截得的弦长为:,解得:圆的标准方程为:(2)①若直线过原点,可假设直线方程为:,即直线与圆相切 圆心到直线距离,解得:切线方程为:②若直线不过原点,可假设直线方程为:,即圆心到直线距离,解得:或切线方程为或综上所述,切线方程为或或【总结提升】直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小.【变式探究】1.在平面直角坐标系xOy中,A(-12,0),B(0,6),点P在圆O:x2+y2=50上,若·20,则点P的横坐标的取值范围是_________【答案】【解析】设,由,易得,由,可得或,由得P点在圆左边弧上,结合限制条件,可得点P横坐标的取值范围为.2.已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.(1)求k的取值范围;(2)若=12,其中O为坐标原点,求|MN|.【答案】(1);(2)2.【解析】(1)由题意可得,直线l的斜率存在,设过点A(0,1)的直线方程:y=kx+1,即:kx-y+1=0.由已知可得圆C的圆心C的坐标(2,3),半径R=1.故由,解得:.故当,过点A(0,1)的直线与圆C:相交于M,N两点.(2)设M;N,由题意可得,经过点M、N、A的直线方程为y=kx+1,代入圆C的方程,可得,∴,∴,由,解得 k=1,故直线l的方程为 y=x+1,即 x-y+1=0.圆心C在直线l上,MN长即为圆的直径.所以|MN|=2
相关教案
这是一份高端精品高中数学一轮专题-复数的乘、除运算(讲)(带答案)教案,共4页。教案主要包含了自主学习,合作探究等内容,欢迎下载使用。
这是一份高端精品高中数学一轮专题-直线与圆的位置关系(讲)教案,共7页。教案主要包含了知识清单,考点分类剖析,规律方法,变式探究,总结提升,典例10,典例11,典例12等内容,欢迎下载使用。
这是一份高端精品高中数学一轮专题-双曲线(讲)(带答案)教案,共15页。