终身会员
搜索
    上传资料 赚现金
    《圆的标准方程》课件6(20张PPT)(人教B版必修2)教案
    立即下载
    加入资料篮
    《圆的标准方程》课件6(20张PPT)(人教B版必修2)教案01
    《圆的标准方程》课件6(20张PPT)(人教B版必修2)教案02
    《圆的标准方程》课件6(20张PPT)(人教B版必修2)教案03
    《圆的标准方程》课件6(20张PPT)(人教B版必修2)教案04
    《圆的标准方程》课件6(20张PPT)(人教B版必修2)教案05
    《圆的标准方程》课件6(20张PPT)(人教B版必修2)教案06
    《圆的标准方程》课件6(20张PPT)(人教B版必修2)教案07
    《圆的标准方程》课件6(20张PPT)(人教B版必修2)教案08
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学必修22.3.1圆的标准方程教案

    展开
    这是一份数学必修22.3.1圆的标准方程教案,共20页。PPT课件主要包含了则PA⊥PB,轨迹法,待定系数法,圆心两条直线的交点,半径圆心到圆上一点,A11,B2-2,弦AB的垂直平分线,公式法等内容,欢迎下载使用。

    (1) 求到点C(1, 2)距离为2的点的轨迹方程.
    ∴ (x 1)2 + ( y  2)2 = 4
    (2) 方程(x 1)2 + ( y  2)2 = 4表示的曲线是什么?
    以点C(1, 2)为圆心, 2为半径的圆.
    知识探究一:圆的标准方程
    设圆上任意一点P(x,y),
    平面内与定点的距离等于定长的点的集合(轨迹)叫做圆.
    圆心为C(a, b), 半径为r的圆的标准方程.
    (x  a)2 + ( y  b)2 = r2
    圆心C(a,b),半径r
    特别地,若圆心为O(0,0),则圆的方程为:
    3. 特殊位置的圆的方程:
    x2 + y2 = r2 (r≠0)
    (x  a)2 + y2 = r2 (r≠0)
    x2+ (y  b)2 = r2 (r≠0)
    (x  a)2 + (y-b)2 = b2 (b≠0)
    圆心在x轴上且过原点:
    (x  a)2 + y2 = a2 (a≠0)
    圆心在y轴上且过原点:
    x 2 + (y-b)2 = b2 (b≠0)
    (x  a)2 + (y-b)2 = a2+b2 (a2+b2≠0)
    (x  a)2 + (y-b)2 = a2 (a≠0)
    圆与x,y轴都相切:
    (x  a)2 + (y±a)2 = a2 (a≠0)
    1.说出下列圆的方程: (1) 圆心在原点,半径为3. (2) 圆心在点C(3, -4), 半径为7.
    2. 说出下列方程所表示的圆的圆心坐标和半径:
    (1) (x + 7)2 + ( y  4)2 = 36
    (2) x2 + y2  4x + 10y + 28 = 0
    x 2 + y 2 =9
    圆心C( 7, 4), r = 6
    圆心C(2, 5), r = 1
    圆心C(a, 0), r = |m|
    (3) (x  a)2 + y 2 = m2
    (x  3)2 +( y+4) 2 = 49
    知识探究二:点与圆的位置关系
    思考1:在平面几何中,点与圆有哪几种位置关系?
    思考2:在平面几何中,如何确定点与圆的位置关系?
    思考3:在直角坐标系中,已知点M(x0,y0)和圆C: ,如何判断点M在圆外、圆上、圆内?
    (x0-a)2+(y0-b)2>r2时,点M在圆C外;
    (x0-a)2+(y0-b)2=r2时,点M在圆C上;
    (x0-a)2+(y0-b)2思考4:经过三个不共线的点分别可以作多少个圆?
    思考5:集合{(x,y)|(x-a)2+(y-b)2≤r2}表示的图形是什么?
    不等式表示:(x-a)2+(y-b)2=r2的圆及其内部
    不共线的三个点确定唯一一个圆
    由公式得圆的标准方程为:
    例1已知两点P1(4, 9)和P2(6, 3),求以P1P2为直径的圆的方程.
    5.圆的方程的求法:
    ①公式法:求出圆心,半径,代入圆方程
    (x  5)2 + ( y  6)2 = 10
    步骤1:设出圆的方程
    步骤3:写出圆的方程
    思考:一般地,已知点A(x1,y1),B(x2,y2),则以线段AB为直径的圆方程如何?
    (x-x1)(x-x2)+(y-y1)(y-y2)=0
    设圆上任意一点P(x,y),
    解:设所求圆的方程为:
    因为A(5,1),B (7,-3),C(2,8)都在圆上
    例2 ⊿ABC的三个顶点的坐标分别是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程.
    例3.己知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心在直线l:x-y+1=0上,求圆心为C的圆的标准方程.
    解:∵A(1,1),B(2,-2)
    ∴圆心C(-3,-2)
    圆经过A(1,1),B(2,-2)
    ∵圆心在直线l:x-y+1=0上
    例5.求以(1,3)为圆心,并且和直线 3x-4y-7=0相切的圆的方程.
    分析:要确定圆的方程需要几个独立条件?已经知道几个条件?还需要什么条件?
    解:∵圆心C(1,3),
    圆C和直线3x-4y-7=0相切,
    ∴半径r等于圆心C到直线3x-4y-7=0的距离.
    由点到直线的距离公式,得:
    2 .求满足下列条件的圆的方程:
    1.点(2a, 1  a)在圆x2 + y2 = 4的内部,求实数 a 的取值范围.
    (x  6)2 + y2 = 25或(x + 2)2 + y2 = 25
     < a < 1
    (1) 圆心在 x 轴上,半径为5,且过点A(2, 3).
    (2)过点A(3,1)和B( 1,3),且圆心在直线3x-y-2=0上.
    (x  2)2 + ( y  4)2 = 10
    (3)求以点C(1,3)为圆心,并且和直线3x-4y-7=0相切的圆的方程.
    (x  1)2 + ( y  3)2 =
    3.求满足下列条件的圆的方程:
    (x + 2)2 + y2 = 50
    x2 + ( y  6)2 = 10
    (x  8)2 + ( y + 3)2 = 25
    (1) 经过点A(3,5)和B(3,7),并且圆心在 x 轴上.
    (2) 经过点A(3,5)和B(3,7),并且圆心在 y 轴上.
    (3) 经过点P(5,1),且圆心在C(8, 3).
    (4)求圆心C在直线 x+2y+4=0 上,且过两定点A(1,1), B(1,-1)的圆的方程。
    相关教案

    人教版新课标B必修22.3.1圆的标准方程教案: 这是一份人教版新课标B必修22.3.1圆的标准方程教案,共29页。PPT课件主要包含了课时安排和说明,说课流程,教学背景分析,教学的重点和难点,教材结构分析,学情分析,教学方法,教法学法分析,学法分析,坐标法等内容,欢迎下载使用。

    2021学年2.3.1圆的标准方程教案: 这是一份2021学年2.3.1圆的标准方程教案,共18页。PPT课件主要包含了复习引入,引入新课,圆的方程,圆的标准方程,特殊位置的圆方程,整理得,典型例题,点与圆的位置关系,解此方程组得,直线AB的斜率等内容,欢迎下载使用。

    高中数学人教版新课标B必修22.3.1圆的标准方程教学设计: 这是一份高中数学人教版新课标B必修22.3.1圆的标准方程教学设计,共23页。PPT课件主要包含了求曲线方程的步骤,圆的定义,写出下列圆的方程等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map