![5.2.1《圆的对称性(1)》参考教案第1页](http://img-preview.51jiaoxi.com/2/3/12490731/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![5.2.1《圆的对称性(1)》参考教案第2页](http://img-preview.51jiaoxi.com/2/3/12490731/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![5.2.1《圆的对称性(1)》参考教案第3页](http://img-preview.51jiaoxi.com/2/3/12490731/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:鲁教版数学九年级下册教案
- 5.1《圆》 教案 教案 0 次下载
- 5.2.2《圆的对称性(2)》 教案 教案 0 次下载
- 5.3《垂径定理》 教案 教案 0 次下载
- 5.4.1《圆周角和圆心角的关系(1)》 教案 教案 0 次下载
- 5.4.2《圆周角和圆心角的关系(2)》 教案 教案 0 次下载
鲁教版 (五四制)九年级下册2 圆的对称性教案
展开
这是一份鲁教版 (五四制)九年级下册2 圆的对称性教案,共6页。
(一)教学知识点
1.圆的轴对称性、旋转不变性.
2.圆心角、弧、弦之间相等关系定理.
(二)能力训练要求
1.通过观察、比较、操作、推理、归纳等活动,发展空间观念、推理能力以及概括问题的能力.
2.利用圆的旋转不变性,研究圆心角、弧、弦之间相等关系定理.
(三)情感与价值观要求
培养学生积极探索数学问题的态度及方法.
教学重点
圆心角、弧、弦之间关系定理.
教学难点
“圆心角、弧、弦之间关系定理”中的“在同圆或等圆”条件的理解及定理的证明.
教学方法
指导探索法.
教学过程
Ⅰ.创设问题情境,引入新课
[师]前面我们已探讨过轴对称图形,哪位同学能叙述一下轴对称图形的定义?,
[生]如果一个图形沿着某一条直线折叠后。直线两旁的部分能够互相重合,那么这个图形叫轴对称图形,这条直线叫对称轴.
[师]我们是用什么方法研究了轴对称图形?
[生]折叠.
[师]今天我们继续用前面的方法来研究圆的对称性.
Ⅱ.讲授新课
[师]同学们想一想:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?
[生]圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴.
[师]是吗?你是用什么方法解决上述问题的?大家互相讨论一下.
[生]我们可以利用折叠的方法,解决上述问题.把一个圆对折以后,圆的两半部分重合,折痕是一条过圆心的直线,由于过圆心可以作无数条直线,这样便可知圆有无数条对称轴.
[师]很好.
教师板书:
圆是轴对称图形图形,对称轴是任意一条过圆心的直线.
下面我们来认识一下弧、弦、直径这些与圆有关的概念.
1.圆弧:圆上任意两点间的部分叫做圆弧,简称弧(arc).
2.弦:连接圆上任意两点的线段叫做弦(chrd).
3.直径:经过圆心的弦叫直径(diameter).
如右图。以A、B为端点的弧记作AB,
渎作“圆弧AB”或“弧AB”;线段AB是
⊙O的一条弦,弧CD是⊙O的一条直径.
注意:
1.弧包括优弧(majr arc)和劣弧(minr are),大于半圆的弧称为优弧,小于半圆的弧称为劣弧.如上图中,以A、D为端点的弧有两条:优弧ACD(记作ACD),劣弧ABD(记作AD).半圆,圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫半圆弧,简称半圆.半圆是弧,但弧不一定是半圆;半圆既不是劣弧,也不是优弧.
[师]我们研究过中心对称图形,我们是用什么方法来研究它的,它的定义是什么?哪位同学知道?
[生]用旋转的方法.中心对称图形是指把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫中心对称图形.这个点就是它的对称中心.
[师]圆是一个特殊的圆形,通过前面的学习,同学们已经了解到圆既是一个轴对称图形又是一个中心对称图形.那么,圆还有其他特性吗?下面我们继续来探讨.
[师]同学们请观察老师手中的两个圆有什么特点?
[生]大小一样.
[师]现在老师把这两个圆叠在一起,使它俩重合,将圆心固定.
将上面这个圆旋转任意一个角度,两个圆还重合吗?
[生]重合.
[师]通过旋转的方法我们知道:圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.圆的中心对称性是其旋转不变性的特例.即圆是中心对称图形,对称中心为圆心.
[师]我们一起来做一做.
按下面的步骤做一做:
1.在两张透明纸上,作两个半径相等的⊙O和⊙O′,沿圆周分别将两圆剪下.
2.在⊙O和⊙O′,上分别作相等的圆心角∠AOB和∠A′O′B′(如下图示),圆心固定.
注意:在画∠AOB与∠A′O′B′时,要使OB相对于OA的方向与O′B′相对于O′A′的方向一致,否则当OA与OA′重合时,OB与O′B′不能重合.
3.将其中的一个圆旋转一个角度.使得OA与O′A′重合.
[生]教师叙述步骤,同学们一起动手操作.
[师]通过上面的做一做,你能发现哪些等量关系?同学们互相交流一下,说一说你的理由.
[生甲]由已知条件可知∠AOB=∠A′O′B′.
[生乙]由两圆的半径相等,可以得到∠OAB=∠OBA=∠O′A′B=∠O′B′A′.
[生丙]由△AOB≌△A′O′B′,可得到AB=A′B′.
[生丁]由旋转法可知弧AB=弧A′B′.
[师]很好.大家说得思路很清晰,其实刚才丁同学说到弧AB=弧A′B′的理由是一种新的证明弧相等的方法——叠合法.
[师生共析]我们在上述做一做的过程中发现,固定圆心,将其中一个圆旋转一个角度,使半径OA与O′A′重合时,由于∠AOB=∠A′O′B′.这样便得到半径OB与O′B′重合.因为点A和点A′重合,点B和点B′重合,所以弧AB和弧A′B′重合,弦AB与弦A′B′重合,即弧AB=弧A′B′,AB=A′B′.
[师]在上述操作过程中,你会得出什么结论?
[生]在等圆中,相等的圆心角所对的弧相等,所对的弦相等.
[师]同学做得很好,这就是我们通过实验利用圆的旋转不变性探索到的圆的另一个特性:圆心角、弧、弦之间相等关系定理.
下面,我们一起来看一看命题的证明.
(学生互相讨论交流.学生口述,教师板书)
如上图所示,已知:⊙O和⊙O′是两个半径相等的圆,∠AOB=∠A′O′B′.
求证:弧AB=弧A′B′,AB=A′B′.
证明:将⊙O和⊙O′叠合在一起,固定圆心,将其中的一个圆旋转,一个角度,使得半
径OA与O′A′重合,∵∠AOB=∠A′O′B′,
∴半径OB与O′B′重合.
∵点A与点A′重合,点D与点B′重合,
∴弧AB与弧A′B′重合,弦AB与弦A′B′重合.
∴弧AB=弧A′B′,AB=A′B′.
上面的结论,在同圆中也成立.于是得到下面的定理,
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.
注意:在运用这个定理时,一定不能忘记“在同圆或等圆中”这个前提.否则也不一定有所对的弧相等、弦相等这样的结论.
[师](通过举反例强化对定理的理解)请同学们画一个只能是圆心角相等的这个条件的图.
[生]如下图示,虽然∠AOB=∠A′O′B′,,但AB≠A′B′,弧AB=弧A′B′
下面我们共同想一想.
[师]如果我们把两个圆心角用①表示;两条弧用 eq \\ac(○,2)表示:两条弦用③表示.我们就可以得出这样的结论:
①相等
在同圆或等圆中 ②相等
③也相等
如果在同圆或等圆这个前提下,将题设和结论中任何一项交换一下,结论正确吗?你是怎么想的?请你说一说.(同学们互相交流、讨论)
[生甲]如果将上述题设①和结论②换一下,结论仍正确.可以通过旋转法或叠合法得到证明.
[生乙]如果将上述题设①和结论③互换一下,结论也正确,可以通过证明全等或叠合法得到,
[师]好,通过上面的探索,你得到了什么结论?
[生]在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
在同圆或等圆中,如果两个圆心角,两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.
注意:(1)不能忽略“在同圆或等圆中”这个前提条件,否则,丢掉这个前提,虽然圆心角相等,但所对的弧、弦、弦心距不一定相等.
(2)此定理中的“弧”一般指劣弧.
(3)要结合图形深刻体会圆心角、弧、弦、弦心距这四个概念和“所对”一词的含义.否则易错用此关系.
(4)在具体应用上述定理解决问题时,可根据需要,择其有关部分.如“在同圆中,等弧所对的圆心角相等”“在等圆中,弦心距相等的弦相等”等等.
例如,右图中的∠1=∠2,有的同学认为∠1对AD,
∠2对BC,就推出了AD=BC,显然这是错误的,
因为AD、BC不是“等圆心角对等弦”的弦.
[师]下面我们通过练习巩固本节课的所学内容.
课本P10 随堂练习1、2、3
Ⅲ.课时小结
[师]通过这一节的学习,在得出本节结论的过程中,回忆一下我们使用了哪些研究图形的方法?(同学们之间相互讨论、归纳)
[生]本节采用的方法有多种,利用折叠法研究了圆是轴对称图形,利用旋转的方法得到了圆的旋转不变性,由圆的旋转不变性,我们探究了圆心角、弧、弦、弦心距之间相等关系定理……
Ⅳ.课后作业
课本P10 习题5.2
Ⅴ.活动与探究(略)
相关教案
这是一份初中数学北师大版九年级下册2 圆的对称性教案,共4页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明等内容,欢迎下载使用。
这是一份2020-2021学年2. 圆的对称性教案,共3页。教案主要包含了复习回顾,引入新课,出示学习目标,新知探究,运用拓展,中考链接,全课总结,作业设计,板书设计等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)九年级下册2 圆的对称性教案设计,共3页。教案主要包含了复习回顾,探索新知,例题讲习,巩固新知,课堂小结,布置作业,教学反思等内容,欢迎下载使用。