2012-2013高二北师大数学选修2-2:1.4 数学归纳法教学设计
展开第六课时 1.4数学归纳法
【教学目标】
1. 使学生了解归纳法, 理解数学归纳的原理与实质.
2. 掌握数学归纳法证题的两个步骤;会用“数学归纳法”证明简单的与自然数有关的命题.
3. 培养学生观察, 分析, 论证的能力, 进一步发展学生的抽象思维能力和创新能力,让学生经历知识的构建过程, 体会类比的数学思想.
4. 努力创设课堂愉悦情境,使学生处于积极思考、大胆质疑氛围,提高学生学习的兴趣和课堂效率.
5. 通过对例题的探究,体会研究数学问题的一种方法(先猜想后证明), 激发学生的学习热情,使学生初步形成做数学的意识和科学精神.
【教学重点】归纳法意义的认识和数学归纳法产生过程的分析
【教学难点】数学归纳法中递推思想的理解
【教学方法】类比启发探究式教学方法
【教学手段】多媒体辅助课堂教学
【教学程序】第一阶段:输入阶段——创造学习情境,提供学习内容
1. 创设问题情境,启动学生思维
(1) 不完全归纳法引例:
明朝刘元卿编的《应谐录》中有一个笑话:财主的儿子学写字.这则笑话中财主的儿子得出“四就是四横、五就是五横……”的结论,用的就是“归纳法”,不过,这个归纳推出的结论显然是错误的.
(2) 完全归纳法对比引例:
有一位师傅想考考他的两个徒弟,看谁更聪明一些.他给每人一筐花生去剥皮,看看每一粒花生仁是不是都有粉衣包着,看谁先给出答案.大徒弟费了很大劲将花生全部剥完了;二徒弟只拣了几个饱满的,几个干瘪的,几个熟好的,几个没熟的,几个三仁的,几个一仁、两仁的,总共不过一把花生.显然,二徒弟先给出答案,他比大徒弟聪明.
在生活和生产实际中,归纳法也有广泛应用.例如气象工作者、水文工作者依据积累的历史资料作气象预测,水文预报,用的就是归纳法.这些归纳法却不能用完全归纳法.
2. 回顾数学旧知,追溯归纳意识
(从生活走向数学,与学生一起回顾以前学过的数学知识,进一步体会归纳意识,同时让学生感受到我们以前的学习中其实早已接触过归纳.)
(1) 不完全归纳法实例: 给出等差数列前四项, 写出该数列的通项公式.
(2) 完全归纳法实例: 证明圆周角定理分圆心在圆周角内部、外部及一边上三种情况.
3.借助数学史料, 促使学生思辨
(在生活引例与学过的数学知识的基础上,再引导学生看数学史料,能够让学生多方位多角度体会归纳法,感受使用归纳法的普遍性.同时引导学生进行思辨:在数学中运用不完全归纳法常常会得到错误的结论,不管是我们还是数学大家都可能如此.那么,有没有更好的归纳法呢?)
问题1 已知=(n∈N),
(1)分别求;;;. (2)由此你能得到一个什么结论?这个结论正确吗?
(培养学生大胆猜想的意识和数学概括能力.概括能力是思维能力的核心.鲁宾斯坦指出:思维都是在概括中完成的.心理学认为“迁移就是概括”,这里知识、技能、思维方法、数学原理的迁移,我找的突破口就是学生的概括过程.)
问题2 费马(Fermat)是17世纪法国著名的数学家,他曾认为,当n∈N时,一定都是质数,这是他对n=0,1,2,3,4作了验证后得到的.后来,18世纪伟大的瑞士科学家欧拉(Euler)却证明了=4 294 967 297=6 700 417×641,从而否定了费马的推测.没想到当n=5这一结论便不成立.
问题3 , 当n∈N时,是否都为质数?
验证: f(0)=41,f(1)=43,f(2)=47,f(3)=53,f(4)=61,f(5)=71,f(6)=83,f(7)=97,f(8)=113,f(9)=131,f(10)=151,…,f(39)=1 601.但是f(40)=1 681=,是合数.
第二阶段:新旧知识相互作用阶段——新旧知识作用,搭建新知结构
3. 搜索生活实例,激发学习兴趣
(在第一阶段的基础上,由生活实例出发,与学生一起解析归纳原理, 揭示递推过程.孔子说:“知之者不如好之者,好之者不如乐之者.”兴趣这种个性心理倾向一般总是伴随着良好的情感体验.)
实例:播放多米诺骨牌录像
关键:(1)第一张牌被推倒; (2) 假如某一张牌倒下, 则它的后一张牌必定倒下. 于是, 我们可以下结论: 多米诺骨牌会全部倒下.
搜索:再举几则生活事例:推倒自行车, 早操排队对齐等.
4.类比数学问题, 激起思维浪花类比多米诺骨牌过程, 证明等差数列通项公式:
(1) 当n=1时等式成立; (2) 假设当n=k时等式成立, 即, 则=, 即n=k+1时等式也成立. 于是, 我们可以下结论: 等差数列的通项公式对任何n∈都成立.
(布鲁纳的发现学习理论认为,“有指导的发现学习”强调知识发生发展过程.这里通过类比多米诺骨牌过程,让学生发现数学归纳法的雏形,是一种再创造的发现性学习.)
5. 引导学生概括, 形成科学方法
证明一个与正整数有关的命题关键步骤如下:
(1) 证明当n取第一个值时结论正确;
(2) 假设当n=k (k∈,k≥) 时结论正确, 证明当n=k+1时结论也正确.
完成这两个步骤后, 就可以断定命题对从开始的所有正整数n都正确.
这种证明方法叫做数学归纳法.
第三阶段:操作阶段——巩固认知结构,充实认知过程
6. 蕴含猜想证明, 培养研究意识
典例分析
(本例要求学生先猜想后证明,既能巩固归纳法和数学归纳法,也能教给学生做数学的方法,培养学生独立研究数学问题的意识和能力.)
例1 数列满足,先计算前4项后,猜想的表达式,并用数学归纳法证明;
解:,猜想:
下面用数学归纳法证明:
证明:(1)当时n=1有上面过程知猜想成立
(2)假设时,命题真,即:
∵
又
∴=
∴,即当时也成立。
变式练习1
已知已知下列等式
,
,
,
……
猜想第n个式子并证明你的猜想。
解:猜想:第个式子是:
证:(数学归纳法)当时,显然成立;设当时成立,即:
, 两边同加上得:
,即时也成立。
根据数学归纳法原理可知原命题成立。
7. 师生共同小结, 完成概括提升
(1) 本节课的中心内容是归纳法和数学归纳法;
(2) 归纳法是一种由特殊到一般的推理方法,它可以分为完全归纳法和不完全归纳法两种,完全归纳法只局限于有限个元素,而不完全归纳法得出的结论不一定具有可靠性,数学归纳法属于完全归纳法;
(3) 数学归纳法作为一种证明方法,其基本思想是递推(递归)思想,使用要点可概括为:两个步骤一结论,递推基础不可少,归纳假设要用到,结论写明莫忘掉;
(4) 本节课所涉及到的数学思想方法有:递推思想、类比思想、分类思想、归纳思想、辩证唯物主义思想.
8. 巩固延伸铺垫
在数学归纳法证明的第二步中,证明n=k+1时命题成立, 必须要用到n=k时命题成立这个假设.这里留一个辨析题给学生课后讨论思考:
用数学归纳法证明: (n∈)时, 其中第二步采用下面的证法:
设n=k时等式成立, 即, 则当n=k+1时,
.
你认为上面的证明正确吗?为什么?
教后反思:
1.数学归纳法是一种用于证明与自然数n有关的命题的正确性的证明方法.它的操作步骤简单、明确,教学重点不应该是方法的应用.我认为不能把教学过程当作方法的灌输,技能的操练.为此,我设想强化数学归纳法产生过程的教学,把数学归纳法的产生寓于对归纳法的分析、认识当中,把数学归纳法的产生与不完全归纳法的完善结合起来.这样不仅使学生可以看到数学归纳法产生的背景,从一开始就注意它的功能,为使用它打下良好的基础,而且可以强化归纳思想的教学,这不仅是对中学数学中以演绎思想为主的教学的重要补充,也是引导学生发展创新能力的良机.
2.在教学方法上,这里运用了在教师指导下的师生共同讨论、探索的方法.目的是加强学生对教学过程的参与.为了使这种参与有一定的智能度,教师应做好发动、组织、引导和点拨.学生的思维参与往往是从问题开始的,本节课按照思维次序编排了一系列问题,让学生投入到思维活动中来,把本节课的研究内容置于问题之中,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得知识体系的更新与拓展.
3.运用数学归纳法证明与正整数有关的数学命题,两个步骤缺一不可.理解数学归纳法中的递推思想,尤其要注意其中第二步,证明n=k+1命题成立时必须要用到n=k时命题成立这个条件.这些内容都将放在下一课时完成,这种理解不仅使我们能够正确认识数学归纳法的原理与本质,也为证明过程中第二步的设计指明了思维方向.
基础训练:
1.用数学归纳法证明
在验证成立时,左边所得的项为( )
A.1 B. 1+ C. D. ;
1、答案C;
2.用数学归纳法证明“当为正奇数时,能被整除”第二步的归纳假设应写成( )
A.假设正确,再推 正确;
B.假设正确,再推 正确;
C.假设正确,再推正确; D.假设正确,再推正确;
2、答案B;
3.用数学归纳法证明:“当是31的倍数”时,时的原式是 ,从到时需添加的项是 ;
3、答案;;
4.正数数列中,.
⑴ 求;⑵ 猜想的表达式并证明;
4、解:(1)
(2)猜想:,下面用数学归纳法证明:
(只证明第二步)假设时,命题真,即
∴ 考虑到,解得:
即当时也成立。
5.用数学归纳法证明:能被9整除。
5、略证:(只证明第二步)假设时,命题真!即:能被9整除。
,显然能被9整除,所以能被9整除。即当时也成立。