中考数学《一轮专题讲义》(41专题)第40讲 与圆有关的位置关系(解析版)学案
展开 中考数学一轮复习讲义
考点四十:与圆有关的位置关系
聚焦考点☆温习理解
一、点和圆的位置关系
设⊙O的半径是r,点P到圆心O的距离为d,则有:
d
d>r点P在⊙O外。
二、直线与圆的位置关系
直线和圆有三种位置关系,具体如下: [来源:Zxxk.Com]
(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,
(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
如果⊙O的半径为r,圆心O到直线l的距离为d,那么:
直线l与⊙O相交 <====> d
直线l与⊙O相离 <====> d>r;
切线的判定和性质 :
(1)、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
(2)、切线的性质定理:圆的切线垂直于经过切点的半径。如右图中,OD垂直于切线。
切线长定理 :
(1)、切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点
到圆的切线长。
(2)、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点
的连线平分两条切线的夹角。
(3)、圆内接四边形性质(四点共圆的判定条件)圆内接四边形对角互补。
(4)、三角形的内切圆:与三角形的各边都相切的圆叫做三角形的内切圆。如图圆O是△A'B'C'的内切圆。三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。
三、圆和圆的位置关系
1、圆和圆的位置关系
如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
如果两个圆有两个公共点,那么就说这两个圆相交。
2、圆心距
两圆圆心的距离叫做两圆的圆心距。
3、圆和圆位置关系的性质与判定
设两圆的半径分别为R和r,圆心距为d,那么
两圆外离d>R+r
两圆外切d=R+r
两圆相交R-r
两圆内含d
4、两圆相切、相交的重要性质
如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。
名师点睛☆典例分类
考点典例一、直线与圆的位置关系
【例1】(2019•广东广州•3分)平面内,⊙O的半径为1,点P到O的距离为2,过点P可作⊙O的切线条数为( )
A.0条 B.1条 C.2条 D.无数条
【分析】先确定点与圆的位置关系,再根据切线的定义即可直接得出答案.
【解答】解:∵⊙O的半径为1,点P到圆心O的距离为2,
∴d>r,
∴点P与⊙O的位置关系是:P在⊙O外,
∵过圆外一点可以作圆的2条切线,
故选:C.
【点评】此题主要考查了对点与圆的位置关系,切线的定义,切线就是与圆有且只有1个公共点的直线,理解定义是关键.
【点睛】考查了直线与圆的位置关系和一次函数的图象与性质,解题的关键是了解直线与圆的位置关系与d与r的数量关系.
【举一反三】(2017广西百色第11题)以坐标原点为圆心,作半径为2的圆,若直线与相交,则的取值范围是( )
A. B. C. D.
【答案】D
【解析】
则若直线y=﹣x+b与⊙O相交,则b的取值范围是﹣2<b<2.故选D
考点:1.直线与圆的位置关系;2.一次函数图象与系数的关系.
考点典例二、切线的性质及判定
【例2】(2019•湖北省咸宁市•9分)如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.
(1)试判断FG与⊙O的位置关系,并说明理由.
(2)若AC=3,CD=2.5,求FG的长.
【分析】(1)如图,连接OF,根据直角三角形的性质得到CD=BD,得到∠DBC=∠DCB,根据等腰三角形的性质得到∠OFC=∠OCF,得到∠OFC=∠DBC,推出∠OFG=90°,于是得到结论;
(2)连接DF,根据勾股定理得到BC==4,根据圆周角定理得到∠DFC=90°,根据三角函数的定义即可得到结论.
【解答】解:(1)FG与⊙O相切,
理由:如图,连接OF,
∵∠ACB=90°,D为AB的中点,
∴CD=BD,
∴∠DBC=∠DCB,
∵OF=OC,
∴∠OFC=∠OCF,
∴∠OFC=∠DBC,
∴OF∥DB,
∴∠OFG+∠DGF=180°,
∵FG⊥AB,
∴∠DGF=90°,
∴∠OFG=90°,
∴FG与⊙O相切;
(2)连接DF,
∵CD=2.5,
∴AB=2CD=5,
∴BC==4,
∵CD为⊙O的直径,
∴∠DFC=90°,
∴FD⊥BC,
∵DB=DC,
∴BF=BC=2,
∵sin∠ABC=,
即=,
∴FG=.
【点评】本题考查了直线与圆的位置关系,平行线的判定和性质,勾股定理,解直角三角形,正确的作出辅助线是解题的关键.
【举一反三】
(2019•四川省达州市•8分)如图,⊙O是△ABC的外接圆,∠BAC的平分线交⊙O于点D,交BC于点E,过点D作直线DF∥BC.
(1)判断直线DF与⊙O的位置关系,并说明理由;
(2)若AB=6,AE=,CE=,求BD的长.
【分析】(1)连接OD,根据角平分线的定义得到∠BAD=∠CAD,求得=,根据垂径定理得到OD⊥BC,根据平行线的性质得到OD⊥DF,于是得到DF与⊙O相切;
(2)根据相似三角形的判定和性质即可得到结论.
【解答】解:(1)DF与⊙O相切,
理由:连接OD,
∵∠BAC的平分线交⊙O于点D,
∴∠BAD=∠CAD,
∴=,
∴OD⊥BC,
∵DF∥BC,
∴OD⊥DF,
∴DF与⊙O相切;
(2)∵∠BAD=∠CAD,∠ADB=∠C,
∴△ABD∽△AEC,
∴,
∴=,
∴BD=.
【点评】本题主要考查的是直线与圆的位置关系,相似三角形的性质和判定、等腰三角形的性质、切线的判定,证得∠BAD=∠DAC是解题的关键.
考点典例三、圆和圆的位置关系
【例3】1.(2019•上海)已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是( )
A.11 B.10 C.9 D.8
【分析】如图,设⊙A,⊙B,⊙C的半径为x,y,z.构建方程组即可解决问题.
【解答】解:如图,设⊙A,⊙B,⊙C的半径为x,y,z.
由题意:,
解得,
故选:C.
【举一反三】
(2018学年嘉定区初三一模))如图,在Rt△ABC中,∠C=90°,, ,以点为圆心, 长为半径的⊙与边交于点,以点为圆心, 长为半径的⊙与⊙另一个交点为点.
(1)求的长;
(2)求的长.
【答案】(1)2(2)
【解析】试题分析:(1)过点作,垂足为点,得.运用勾股定理求出AB=5,再通过解直角三角形得到AH=1,从而得解;
(2)运用平行线分线段成比例即可求解.
试题解析:(1)过点作,垂足为点,
(2)设与的交点为,
由题意,得, ,
∴,
∴∥,
∴ ,
∵, ,
∴ ,
∴,
∴ ,
∴ .
课时作业☆能力提升
一.选择题
1.(2018湖南随州中考模拟)在RT△ABC中,∠C=90°,BC=3cm,AC=4cm,以点C为圆心,以2.5cm为半径画圆,则⊙C与直线AB的位置关系是( )
A.相交 B.相切 C.相离 D.不能确定 [来源:学|科|网Z|X|X|K]
【答案】A.
考点:直线与圆的位置关系.
2. 如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( )
A. 3 B. C. D.
【来源】广东省深圳市2018年中考数学试题
【答案】D
【解析】【分析】设光盘圆心为O,连接OC,OA,OB,由AC、AB都与圆O相切,利用切线长定理得到AO平分∠BAC,且OC垂直于AC,OB垂直于AB,可得出∠CAO=∠BAO=60°,得到∠AOB=30°,利用30°所对的直角边等于斜边的一半求出OA的长,再利用勾股定理求出OB的长,即可确定出光盘的直径.
【详解】如图,设光盘圆心为O,连接OC,OA,OB,
∵AC、AB都与圆O相切,
∴AO平分∠BAC,OC⊥AC,OB⊥AB,
∴∠CAO=∠BAO=60°,
∴∠AOB=30°,
在Rt△AOB中,AB=3cm,∠AOB=30°,
∴OA=6cm,
根据勾股定理得:OB=3,
则光盘的直径为6,
故选D.
【点睛】本题考查了切线的性质,切线长定理,含30°角的直角三角形的性质,以及勾股定理,熟练掌握切线的性质是解本题的关键.
3. 如图,与相切于点,若,则的度数为( )
A. B. C. D.
【来源】山东省泰安市2018年中考数学试题
【答案】A
【解析】分析:连接OA、OB,由切线的性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由三角形内角和定理知∠AOB=80°,根据圆周角定理可得答案.
详解:如图,连接OA、OB.
∵BM是⊙O的切线,∴∠OBM=90°.
∵∠MBA=140°,∴∠ABO=50°.
∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°.
故选A.
点睛:本题主要考查切线的性质,解题的关键是掌握切线的性质:①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.
4. 如图,已知AB是的直径,点P在BA的延长线上,PD与相切于点D,过点B作PD的垂线交PD的延长线于点C,若的半径为4,,则PA的长为( )
A. 4 B. C. 3 D. 2.5
【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)
【答案】A
【解析】【分析】连接OD,由已知易得△POD∽△PBC,根据相似三角形对应边成比例可求得PO的长,由PA=PO-AO即可得.
【详解】连接OD,
∵PD与⊙O相切于点D,∴OD⊥PD,
∴∠PDO=90°,
∵∠BCP=90°,
∴∠PDO=∠PCB,
∵∠P=∠P,
∴△POD∽△PBC,
∴PO:PB=OD:BC,
即PO:(PO+4)=4:6,
∴PO=8,
∴PA=PO-OA=8-4=4,
故选A.
【点睛】本题考查了切线的性质、相似三角形的判定与性质,连接OD构造相似三角形是解题的关键
5. (2019湖北仙桃)(3分)如图,AB为⊙O的直径,BC为⊙O的切线,弦AD∥OC,直线CD交BA的延长线于点E,连接BD.下列结论:①CD是⊙O的切线;②CO⊥DB;③△EDA∽△EBD;④ED•BC=BO•BE.其中正确结论的个数有( )
A.4个 B.3个 C.2个 D.1个
【答案】A
【解答】解:连结DO.
∵AB为⊙O的直径,BC为⊙O的切线,
∴∠CBO=90°,
∵AD∥OC,
∴∠DAO=∠COB,∠ADO=∠COD.
又∵OA=OD,
∴∠DAO=∠ADO,
∴∠COD=∠COB.
在△COD和△COB中,,
∴△COD≌△COB(SAS),
∴∠CDO=∠CBO=90°.
又∵点D在⊙O上,
∴CD是⊙O的切线;故①正确,
∵△COD≌△COB,
∴CD=CB,
∵OD=OB,
∴CO垂直平分DB,
即CO⊥DB,故②正确;
∵AB为⊙O的直径,DC为⊙O的切线,
∴∠EDO=∠ADB=90°,
∴∠EDA+∠ADO=∠BDO+∠ADO=90°,
∴∠ADE=∠BDO,
∵OD=OB,
∴∠ODB=∠OBD,
∴∠EDA=∠DBE,
∵∠E=∠E,
∴△EDA∽△EBD,故③正确;
∵∠EDO=∠EBC=90°,
∠E=∠E,
∴△EOD∽△ECB,
∴,
∵OD=OB,
∴ED•BC=BO•BE,故④正确;
故选:A.
6. (黑龙江省牡丹江市2018届中考牡丹江管理局北斗星协会一模考试数学试题)如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为( )
A. 40° B. 50° C. 60° D. 80°
【答案】B
故选B.
点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.
7. (2018贵州遵义中考模拟)如图,矩形ABCD中,AB=4,BC=3,连接AC,⊙P和⊙Q分别是△ABC和△ADC的内切圆,则PQ的长是( )
A. B. C. D.
【答案】B.
【解析】
试题分析:∵四边形ABCD为矩形,∴△ACD≌△CAB,∴⊙P和⊙Q的半径相等.
在Rt△BC中,AB=4,BC=3,∴AC==5,∴⊙P的半径r===1.
连接点P、Q,过点Q作QE∥BC,过点P作PE∥AB交QE于点E,则∠QEP=90°,如图所示.
在Rt△QEP中,QE=BC﹣2r=3﹣2=1,EP=AB﹣2r=4﹣2=2,∴PQ===.故选B.
考点:三角形的内切圆与内心;矩形的性质.
二.填空题
8. 如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=__________.
【来源】江苏省连云港市2018年中考数学试题
【答案】44°
【解析】分析:首先连接OB,由点C在过点B的切线上,且OC⊥OA,根据等角的余角相等,易证得∠CBP=∠CPB,利用等腰三角形的性质解答即可.
详解:连接OB,
∵BC是⊙O的切线,
∴OB⊥BC,
∴∠OBA+∠CBP=90°,
∵OC⊥OA,
∴∠A+∠APO=90°,
∵OA=OB,∠OAB=22°,
∴∠OAB=∠OBA=22°,
∴∠APO=∠CBP=68°,
∵∠APO=∠CPB,
∴∠CPB=∠ABP=68°,
∴∠OCB=180°-68°-68°=44°,
故答案为:44°
点睛:此题考查了切线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.
9. 如图,菱形ABOC的AB,AC分别与⊙O相切于点D、E,若点D是AB的中点,则∠DOE=__________.
【来源】安徽省2018年中考数学试题
【答案】60°
【解析】【分析】由AB,AC分别与⊙O相切于点D、E,可得∠BDO=∠ADO=∠AEO=90°,根据已知条件可得到BD=OB,在Rt△OBD中,求得∠B=60°,继而可得∠A=120°,再利用四边形的内角和即可求得∠DOE的度数.
【详解 】∵AB,AC分别与⊙O相切于点D、E,
∴∠BDO=∠ADO=∠AEO=90°,
∵四边形ABOC是菱形,∴AB=BO,∠A+∠B=180°,
∵BD=AB,
∴BD=OB,
在Rt△OBD中,∠ODB=90°,BD=OB,∴cos∠B=,∴∠B=60°,
∴∠A=120°,
∴∠DOE=360°-120°-90°-90°=60°,
故答案为:60°.
【点睛】本题考查了切线的性质,菱形的性质,解直角三角形的应用等,熟练掌握相关的性质是解题的关键.
10. (2019•江苏苏州•3分)如图,为的切线,切点为,连接,与交于点,延长与交于点,连接,若,则的度数为 .
【答案】
【解答】切线性质得到
11. (2018上海中考模拟)如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是 .
【答案】8<r<10
【解析】
试题分析:如图1,当C在⊙A上,⊙B与⊙A内切时,
⊙A的半径为:AC=AD=4,
⊙B的半径为:r=AB+AD=5+3=8;
如图2,当B在⊙A上,⊙B与⊙A内切时,
⊙A的半径为:AB=AD=5,
⊙B的半径为:r=2AB=10;
∴⊙B的半径长r的取值范围是:8<r<10.
故答案为:8<r<10.
考点:1.圆与圆的位置关系;2.点与圆的位置关系;3.勾股定理.
三、解答题
12. (新疆乌鲁木齐市第九十八中学2018届九年级下学期第一次模拟考试)如图,已知AB为⊙O的直径,点E在⊙O上,∠EAB的平分线交⊙O于点C,过点C作AE的垂线,垂足为D,直线DC与AB的延长线交于点P.
(1)判断直线PC与⊙O的位置关系,并说明理由;
(2)若tan∠P=,AD=6,求线段AE的长.
【答案】(1)PC是⊙O的切线;(2)
连接OC.∵AC平分∠EAB,∴∠EAC=∠CAB.又∵∠CAB=∠ACO,∴∠EAC=∠OCA,∴OC∥AD.∵AD⊥PD,∴∠OCP=∠D=90°,∴PC是⊙O的切线.
(2)连接BE.在Rt△ADP中,∠ADP=90°,AD=6,tan∠P=,∴PD=8,AP=10,设半径为r.∵OC∥AD,∴,即,解得r=.∵AB是直径,∴∠AEB=∠D=90°,∴BE∥PD,∴AE=AB•sin∠ABE=AB•sin∠P=×=.
点睛:本题考查了直线与圆的位置关系.解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.
13. (天津市和平区 汇文中学 2018年九年级数学中考夯基卷)如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.
(1)求证:直线CP是⊙O的切线;
(2)若BC=2,sin∠BCP=,求⊙O的半径及△ACP的周长.
【答案】详见解析.
【解析】试题分析: (1)欲证明直线CP是的切线,只需证得CP⊥AC;
(2)利用正弦三角函数的定义求得 的直径则 的半径为
∵∠ABC=∠ACB,∴AB=AC,
∵AC是的直径,∴AN⊥BC,
∴∠CAN=∠BAN,BN=CN,
∵∠CAB=2∠BCP,
∴∠CAN=∠BCP.
∵∠CAN+∠ACN=,
∴∠BCP+∠ACN=,
∴CP⊥AC,
∵OC是的半径
∴CP是的切线;
(2)
∴AC=5,
∴的半径为
如图,过点B作BD⊥AC于点D.
由(1)得
在Rt△CAN中,
在△CAN和△CBD中,
∴△CAN∽△CBD,
∴BD=4.
在Rt△BCD中,
∴AD=AC−CD=5−2=3,
∵BD∥CP,
∴△APC的周长是AC+PC+AP=20.
14. 如图,在中,,平分交于点,为上一点,经过点,的分别交AB,AC于点E,F,连接OF交AD于点G.
(1)求证:是的切线;
(2)设,,试用含的代数式表示线段的长;
(3)若,,求的长.
【来源】四川省成都市2018年中考数学试题
【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.
【解析】分析:(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;
(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;
(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.
详解:(1)证明:如图,连接OD,
∵AD为∠BAC的角平分线,
∴∠BAD=∠CAD,
∵OA=OD,
∴∠ODA=∠OAD,
∴∠ODA=∠CAD,
∴OD∥AC,
∵∠C=90°,
∴∠ODC=90°,
∴OD⊥BC,
∴BC为圆O的切线;
(3)连接EF,在Rt△BOD中,sinB=,
设圆的半径为r,可得,
解得:r=5,
∴AE=10,AB=18,
∵AE是直径,
∴∠AFE=∠C=90°,
∴EF∥BC,
∴∠AEF=∠B,
∴sin∠AEF=,
∴AF=AE•sin∠AEF=10×,
∵AF∥OD,
∴,即DG=AD,
∵AD=,
则DG=×=.
点睛:此题属于圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.
15. 如图,已知P为锐角∠MAN内部一点,过点P作PB⊥AM于点B,PC⊥AN于点C,以PB为直径作⊙O,交直线CP于点D,连接AP,BD,AP交⊙O于点E.
(1)求证:∠BPD=∠BAC.
(2)连接EB,ED,当tan∠MAN=2,AB=2时,在点P的整个运动过程中.
①若∠BDE=45°,求PD的长;
②若△BED为等腰三角形,求所有满足条件的BD的长;
(3)连接OC,EC,OC交AP于点F,当tan∠MAN=1,OC//BE时,记△OFP的面积为S1,△CFE的面积为S2,请写出的值.
【来源】浙江省温州市2018年中考数学试卷
【答案】(1)证明见解析;(2)①PD=2;当BD为2,3或时,△BDE为等腰三角形;(3)=
【解析】分析: (1)根据垂直的定义得出∠ABP=∠ACP=90°,根据四边形的内角和得出∠BAC+∠BPC=180°,根据平角的定义得出∠BPD+∠BPC=180°,根据同角的余角相等得出∠BPD=∠BAC ;
(2)①如图1,根据等腰直角三角形的性质得出BP=AB=2, 根据等角的同名三角函数值相等及正切函数的定义得出BP= PD,从而得出PD的长;②Ⅰ如图2,当BD=BE时,∠BED=∠BDE,故∠BPD=∠BPE=∠BAC根据等角的同名三角函数值相等得出tan∠BPE=2,根据正切函数的定义由AB=2,得出BP=, 根据勾股定理即可得出BD=2;Ⅱ如图3,当BE=DE时,∠EBD=∠EDB;由∠APB=∠BDE,∠DBE=∠APC,得出∠APB=∠APC
详解:
(1)解 :∵PB⊥AM,PC⊥AN
∴∠ABP=∠ACP=90°,
∴∠BAC+∠BPC=180°
∵∠BPD+∠BPC=180°
∴∠BPD=∠BAC
(2)解 ;①如图1,
∵∠APB=∠BDE=45°,∠ABP=90°,
∴BP=AB=
∵∠BPD=∠BAC
∴tan∠BPD=tan∠BAC
∴ =2
∴BP=PD
∴PD=2
∴∠BPD=∠BPE=∠BAC
∴tan∠BPE=2
∵AB=
∴BP=
∴BD=2
Ⅱ如图2,当BE=DE时,∠EBD=∠EDB
∵∠APB=∠BDE,∠DBE=∠APC
∴∠APB=∠APC
∴AC=AB=2
过点B作BG⊥AC于点G,得四边形BGCD是矩形
∵AB= ,tan∠BAC=2
∴AG=2
∴BD=CG=
Ⅲ如图4,当BD=DE时,∠DEB=∠DBE=∠APC
∵∠DEB=∠DPB=∠BAC
∴∠APC=∠BAC
设PD=x,则BD=2x
∴ =2
∴ =2
∴x=
∴BD=2x=3
综上所述,当BD为2,3或 时,△BDE为等腰三角形
(3),
如图5,过点O作OH⊥DC于点H
∵tan∠BPD=tan∠MAN=1
∴BD=DP
令BD=DP=2a,PC=2b得
OH=a,CH=a+2b,AC=4a+2b
由OC∥BE得∠OCH=∠PAC
∴
∴OH·AC=CH·PC
∴a(4a+2b)=2b(a+2b)
∴a=b
∴CF=,OF=
∴.
点睛: 本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、相似三角形的判定与性质、中位线定理、勾股定理及三角函数的应用等知识点.
16. (2019湖北省鄂州市)(10分)如图,PA是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.
(1)求证:PB是⊙O的切线;
(2)求证:E为△PAB的内心;
(3)若cos∠PAB=,BC=1,求PO的长.
【分析】(1)连结OB,根据圆周角定理得到∠ABC=90°,证明△AOP≌△BOP,得到∠OBP=∠OAP,根据切线的判定定理证明;
(2)连结AE,根据切线的性质定理得到∠PAE+∠OAE=90°,证明EA平分∠PAD,根据三角形的内心的概念证明即可;
(3)根据余弦的定义求出OA,证明△PAO∽△ABC,根据相似三角形的性质列出比例式,计算即可.
【解答】(1)证明:连结OB,
∵AC为⊙O的直径,
∴∠ABC=90°,
∵AB⊥PO,
∴PO∥BC
∴∠AOP=∠C,∠POB=∠OBC,
OB=OC,
∴∠OBC=∠C,
∴∠AOP=∠POB,
在△AOP和△BOP中,
,
∴△AOP≌△BOP(SAS),
∴∠OBP=∠OAP,
∵PA为⊙O的切线,
∴∠OAP=90°,
∴∠OBP=90°,
∴PB是⊙O的切线;
(2)证明:连结AE,
∵PA为⊙O的切线,
∴∠PAE+∠OAE=90°,
∵AD⊥ED,
∴∠EAD+∠AED=90°,
∵OE=OA,
∴∠OAE=∠AED,
∴∠PAE=∠DAE,即EA平分∠PAD,
∵PA、PD为⊙O的切线,
∴PD平分∠APB
∴E为△PAB的内心;
(3)解:∵∠PAB+∠BAC=90°,∠C+∠BAC=90°,
∴∠PAB=∠C,
∴cos∠C=cos∠PAB=,
在Rt△ABC中,cos∠C===,
∴AC=,AO=,
∵△PAO∽△ABC,
∴,
∴PO===5.
17. (2019•四川省凉山州•8分)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.
(1)求证:DF是⊙O的切线;
(2)若OB=BF,EF=4,求AD的长.
【分析】(1)连接OD,由AB为⊙O的直径得∠BDC=90°,根据BE=EC知∠1=∠3、由OD=OB知∠2=∠4,根据BC是⊙O的切线得∠3+∠4=90°,即∠1+∠2=90°,得证;
(2)根据直角三角形的性质得到∠F=30°,BE=EF=2,求得DE=BE=2,得到DF=6,根据三角形的内角和得到OD=OA,求得∠A=∠ADO=BOD=30°,根据等腰三角形的性质即可得到结论.
【解答】解:(1)如图,连接OD,BD,
∵AB为⊙O的直径,
∴∠ADB=∠BDC=90°,
在Rt△BDC中,∵BE=EC,
∴DE=EC=BE,
∴∠1=∠3,
∵BC是⊙O的切线,
∴∠3+∠4=90°,
∴∠1+∠4=90°,
又∵∠2=∠4,
∴∠1+∠2=90°,
∴DF为⊙O的切线;
(2)∵OB=BF,
∴OF=2OD,
∴∠F=30°,
∵∠FBE=90°,
∴BE=EF=2,
∴DE=BE=2,
∴DF=6,
∵∠F=30°,∠ODF=90°,
∴∠FOD=60°,
∵OD=OA,
∴∠A=∠ADO=BOD=30°,
∴∠A=∠F,
∴AD=DF=6.
中考数学《一轮专题讲义》(41专题)第02讲 实数的计算(解析版)学案: 这是一份中考数学《一轮专题讲义》(41专题)第02讲 实数的计算(解析版)学案,共13页。学案主要包含了实数的运算,非负数的性质,实数的大小比较等内容,欢迎下载使用。
中考数学《一轮专题讲义》(41专题)第12讲 位置与坐标(解析版)学案: 这是一份中考数学《一轮专题讲义》(41专题)第12讲 位置与坐标(解析版)学案,共21页。学案主要包含了三象限夹角平分线上x与y相等,图形的坐标变化与对称,点的平移,点的坐标规律等内容,欢迎下载使用。
中考数学《一轮专题讲义》(41专题)第23讲 视图与投影(解析版)学案: 这是一份中考数学《一轮专题讲义》(41专题)第23讲 视图与投影(解析版)学案,共14页。学案主要包含了辨别立体图形的三种视图,利用三视图求几何体的面积,由三视图确定物体的形状,由视图确定立方体的个数,利用三视图求几何体的体积等内容,欢迎下载使用。