|学案下载
搜索
    上传资料 赚现金
    中考数学《一轮专题讲义》(41专题)第40讲 与圆有关的位置关系(解析版)学案
    立即下载
    加入资料篮
    中考数学《一轮专题讲义》(41专题)第40讲 与圆有关的位置关系(解析版)学案01
    中考数学《一轮专题讲义》(41专题)第40讲 与圆有关的位置关系(解析版)学案02
    中考数学《一轮专题讲义》(41专题)第40讲 与圆有关的位置关系(解析版)学案03
    还剩29页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学《一轮专题讲义》(41专题)第40讲 与圆有关的位置关系(解析版)学案

    展开
    这是一份中考数学《一轮专题讲义》(41专题)第40讲 与圆有关的位置关系(解析版)学案,共32页。学案主要包含了点和圆的位置关系,直线与圆的位置关系,圆和圆的位置关系等内容,欢迎下载使用。

     中考数学一轮复习讲义
    考点四十:与圆有关的位置关系
    聚焦考点☆温习理解
    一、点和圆的位置关系
    设⊙O的半径是r,点P到圆心O的距离为d,则有:
    d d=r点P在⊙O上;
    d>r点P在⊙O外。
    二、直线与圆的位置关系
    直线和圆有三种位置关系,具体如下: [来源:Zxxk.Com]
    (1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;
    (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,
    (3)相离:直线和圆没有公共点时,叫做直线和圆相离。

    如果⊙O的半径为r,圆心O到直线l的距离为d,那么:
    直线l与⊙O相交 <====> d 直线l与⊙O相切 <====> d=r;
    直线l与⊙O相离 <====> d>r;
    切线的判定和性质 :
    (1)、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
    (2)、切线的性质定理:圆的切线垂直于经过切点的半径。如右图中,OD垂直于切线。

    切线长定理 :
    (1)、切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点
    到圆的切线长。
    (2)、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点
    的连线平分两条切线的夹角。
    (3)、圆内接四边形性质(四点共圆的判定条件)圆内接四边形对角互补。
    (4)、三角形的内切圆:与三角形的各边都相切的圆叫做三角形的内切圆。如图圆O是△A'B'C'的内切圆。三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。

    三、圆和圆的位置关系
    1、圆和圆的位置关系
    如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
    如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
    如果两个圆有两个公共点,那么就说这两个圆相交。
    2、圆心距
    两圆圆心的距离叫做两圆的圆心距。
    3、圆和圆位置关系的性质与判定
    设两圆的半径分别为R和r,圆心距为d,那么
    两圆外离d>R+r
    两圆外切d=R+r
    两圆相交R-r 两圆内切d=R-r(R>r)
    两圆内含dr)
    4、两圆相切、相交的重要性质
    如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。
    名师点睛☆典例分类
    考点典例一、直线与圆的位置关系
    【例1】(2019•广东广州•3分)平面内,⊙O的半径为1,点P到O的距离为2,过点P可作⊙O的切线条数为(  )
    A.0条 B.1条 C.2条 D.无数条
    【分析】先确定点与圆的位置关系,再根据切线的定义即可直接得出答案.
    【解答】解:∵⊙O的半径为1,点P到圆心O的距离为2,
    ∴d>r,
    ∴点P与⊙O的位置关系是:P在⊙O外,
    ∵过圆外一点可以作圆的2条切线,
    故选:C.
    【点评】此题主要考查了对点与圆的位置关系,切线的定义,切线就是与圆有且只有1个公共点的直线,理解定义是关键.
    【点睛】考查了直线与圆的位置关系和一次函数的图象与性质,解题的关键是了解直线与圆的位置关系与d与r的数量关系.
    【举一反三】(2017广西百色第11题)以坐标原点为圆心,作半径为2的圆,若直线与相交,则的取值范围是( )
    A. B. C. D.
    【答案】D
    【解析】

    则若直线y=﹣x+b与⊙O相交,则b的取值范围是﹣2<b<2.故选D

    考点:1.直线与圆的位置关系;2.一次函数图象与系数的关系.
    考点典例二、切线的性质及判定
    【例2】(2019•湖北省咸宁市•9分)如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.
    (1)试判断FG与⊙O的位置关系,并说明理由.
    (2)若AC=3,CD=2.5,求FG的长.

    【分析】(1)如图,连接OF,根据直角三角形的性质得到CD=BD,得到∠DBC=∠DCB,根据等腰三角形的性质得到∠OFC=∠OCF,得到∠OFC=∠DBC,推出∠OFG=90°,于是得到结论;
    (2)连接DF,根据勾股定理得到BC==4,根据圆周角定理得到∠DFC=90°,根据三角函数的定义即可得到结论.
    【解答】解:(1)FG与⊙O相切,
    理由:如图,连接OF,
    ∵∠ACB=90°,D为AB的中点,
    ∴CD=BD,
    ∴∠DBC=∠DCB,
    ∵OF=OC,
    ∴∠OFC=∠OCF,
    ∴∠OFC=∠DBC,
    ∴OF∥DB,
    ∴∠OFG+∠DGF=180°,
    ∵FG⊥AB,
    ∴∠DGF=90°,
    ∴∠OFG=90°,
    ∴FG与⊙O相切;
    (2)连接DF,
    ∵CD=2.5,
    ∴AB=2CD=5,
    ∴BC==4,
    ∵CD为⊙O的直径,
    ∴∠DFC=90°,
    ∴FD⊥BC,
    ∵DB=DC,
    ∴BF=BC=2,
    ∵sin∠ABC=,
    即=,
    ∴FG=.

    【点评】本题考查了直线与圆的位置关系,平行线的判定和性质,勾股定理,解直角三角形,正确的作出辅助线是解题的关键.



    【举一反三】
    (2019•四川省达州市•8分)如图,⊙O是△ABC的外接圆,∠BAC的平分线交⊙O于点D,交BC于点E,过点D作直线DF∥BC.
    (1)判断直线DF与⊙O的位置关系,并说明理由;
    (2)若AB=6,AE=,CE=,求BD的长.

    【分析】(1)连接OD,根据角平分线的定义得到∠BAD=∠CAD,求得=,根据垂径定理得到OD⊥BC,根据平行线的性质得到OD⊥DF,于是得到DF与⊙O相切;
    (2)根据相似三角形的判定和性质即可得到结论.
    【解答】解:(1)DF与⊙O相切,
    理由:连接OD,
    ∵∠BAC的平分线交⊙O于点D,
    ∴∠BAD=∠CAD,
    ∴=,
    ∴OD⊥BC,
    ∵DF∥BC,
    ∴OD⊥DF,
    ∴DF与⊙O相切;
    (2)∵∠BAD=∠CAD,∠ADB=∠C,
    ∴△ABD∽△AEC,
    ∴,
    ∴=,
    ∴BD=.

    【点评】本题主要考查的是直线与圆的位置关系,相似三角形的性质和判定、等腰三角形的性质、切线的判定,证得∠BAD=∠DAC是解题的关键.

    考点典例三、圆和圆的位置关系
    【例3】1.(2019•上海)已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是(  )
    A.11 B.10 C.9 D.8
    【分析】如图,设⊙A,⊙B,⊙C的半径为x,y,z.构建方程组即可解决问题.
    【解答】解:如图,设⊙A,⊙B,⊙C的半径为x,y,z.

    由题意:,
    解得,
    故选:C.
    【举一反三】
    (2018学年嘉定区初三一模))如图,在Rt△ABC中,∠C=90°,, ,以点为圆心, 长为半径的⊙与边交于点,以点为圆心, 长为半径的⊙与⊙另一个交点为点.
    (1)求的长;
    (2)求的长.

    【答案】(1)2(2)
    【解析】试题分析:(1)过点作,垂足为点,得.运用勾股定理求出AB=5,再通过解直角三角形得到AH=1,从而得解;
    (2)运用平行线分线段成比例即可求解.
    试题解析:(1)过点作,垂足为点,


    (2)设与的交点为,
    由题意,得, ,

    ∴,
    ∴∥,
    ∴ ,
    ∵, ,
    ∴ ,
    ∴,
    ∴ ,
    ∴ .
    课时作业☆能力提升
    一.选择题
    1.(2018湖南随州中考模拟)在RT△ABC中,∠C=90°,BC=3cm,AC=4cm,以点C为圆心,以2.5cm为半径画圆,则⊙C与直线AB的位置关系是(  )
    A.相交 B.相切 C.相离 D.不能确定 [来源:学|科|网Z|X|X|K]
    【答案】A.

    考点:直线与圆的位置关系.
    2. 如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( )

    A. 3 B. C. D.
    【来源】广东省深圳市2018年中考数学试题
    【答案】D
    【解析】【分析】设光盘圆心为O,连接OC,OA,OB,由AC、AB都与圆O相切,利用切线长定理得到AO平分∠BAC,且OC垂直于AC,OB垂直于AB,可得出∠CAO=∠BAO=60°,得到∠AOB=30°,利用30°所对的直角边等于斜边的一半求出OA的长,再利用勾股定理求出OB的长,即可确定出光盘的直径.
    【详解】如图,设光盘圆心为O,连接OC,OA,OB,
    ∵AC、AB都与圆O相切,
    ∴AO平分∠BAC,OC⊥AC,OB⊥AB,
    ∴∠CAO=∠BAO=60°,
    ∴∠AOB=30°,
    在Rt△AOB中,AB=3cm,∠AOB=30°,
    ∴OA=6cm,
    根据勾股定理得:OB=3,
    则光盘的直径为6,
    故选D.

    【点睛】本题考查了切线的性质,切线长定理,含30°角的直角三角形的性质,以及勾股定理,熟练掌握切线的性质是解本题的关键.
    3. 如图,与相切于点,若,则的度数为( )

    A. B. C. D.
    【来源】山东省泰安市2018年中考数学试题
    【答案】A
    【解析】分析:连接OA、OB,由切线的性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由三角形内角和定理知∠AOB=80°,根据圆周角定理可得答案.
    详解:如图,连接OA、OB.
    ∵BM是⊙O的切线,∴∠OBM=90°.
    ∵∠MBA=140°,∴∠ABO=50°.
    ∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°.
    故选A.

    点睛:本题主要考查切线的性质,解题的关键是掌握切线的性质:①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.
    4. 如图,已知AB是的直径,点P在BA的延长线上,PD与相切于点D,过点B作PD的垂线交PD的延长线于点C,若的半径为4,,则PA的长为( )

    A. 4 B. C. 3 D. 2.5
    【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)
    【答案】A
    【解析】【分析】连接OD,由已知易得△POD∽△PBC,根据相似三角形对应边成比例可求得PO的长,由PA=PO-AO即可得.
    【详解】连接OD,
    ∵PD与⊙O相切于点D,∴OD⊥PD,
    ∴∠PDO=90°,
    ∵∠BCP=90°,
    ∴∠PDO=∠PCB,
    ∵∠P=∠P,
    ∴△POD∽△PBC,
    ∴PO:PB=OD:BC,
    即PO:(PO+4)=4:6,
    ∴PO=8,
    ∴PA=PO-OA=8-4=4,
    故选A.
    【点睛】本题考查了切线的性质、相似三角形的判定与性质,连接OD构造相似三角形是解题的关键
    5. (2019湖北仙桃)(3分)如图,AB为⊙O的直径,BC为⊙O的切线,弦AD∥OC,直线CD交BA的延长线于点E,连接BD.下列结论:①CD是⊙O的切线;②CO⊥DB;③△EDA∽△EBD;④ED•BC=BO•BE.其中正确结论的个数有(  )

    A.4个 B.3个 C.2个 D.1个
    【答案】A
    【解答】解:连结DO.
    ∵AB为⊙O的直径,BC为⊙O的切线,
    ∴∠CBO=90°,
    ∵AD∥OC,
    ∴∠DAO=∠COB,∠ADO=∠COD.
    又∵OA=OD,
    ∴∠DAO=∠ADO,
    ∴∠COD=∠COB.
    在△COD和△COB中,,
    ∴△COD≌△COB(SAS),
    ∴∠CDO=∠CBO=90°.
    又∵点D在⊙O上,
    ∴CD是⊙O的切线;故①正确,
    ∵△COD≌△COB,
    ∴CD=CB,
    ∵OD=OB,
    ∴CO垂直平分DB,
    即CO⊥DB,故②正确;
    ∵AB为⊙O的直径,DC为⊙O的切线,
    ∴∠EDO=∠ADB=90°,
    ∴∠EDA+∠ADO=∠BDO+∠ADO=90°,
    ∴∠ADE=∠BDO,
    ∵OD=OB,
    ∴∠ODB=∠OBD,
    ∴∠EDA=∠DBE,
    ∵∠E=∠E,
    ∴△EDA∽△EBD,故③正确;
    ∵∠EDO=∠EBC=90°,
    ∠E=∠E,
    ∴△EOD∽△ECB,
    ∴,
    ∵OD=OB,
    ∴ED•BC=BO•BE,故④正确;
    故选:A.

    6. (黑龙江省牡丹江市2018届中考牡丹江管理局北斗星协会一模考试数学试题)如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为( )

    A. 40° B. 50° C. 60° D. 80°
    【答案】B

    故选B.
    点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.
    7. (2018贵州遵义中考模拟)如图,矩形ABCD中,AB=4,BC=3,连接AC,⊙P和⊙Q分别是△ABC和△ADC的内切圆,则PQ的长是(  )

    A.      B.      C.      D.
    【答案】B.
    【解析】
    试题分析:∵四边形ABCD为矩形,∴△ACD≌△CAB,∴⊙P和⊙Q的半径相等.
    在Rt△BC中,AB=4,BC=3,∴AC==5,∴⊙P的半径r===1.
    连接点P、Q,过点Q作QE∥BC,过点P作PE∥AB交QE于点E,则∠QEP=90°,如图所示.

    在Rt△QEP中,QE=BC﹣2r=3﹣2=1,EP=AB﹣2r=4﹣2=2,∴PQ===.故选B.
    考点:三角形的内切圆与内心;矩形的性质.
    二.填空题
    8. 如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=__________.

    【来源】江苏省连云港市2018年中考数学试题
    【答案】44°
    【解析】分析:首先连接OB,由点C在过点B的切线上,且OC⊥OA,根据等角的余角相等,易证得∠CBP=∠CPB,利用等腰三角形的性质解答即可.
    详解:连接OB,

    ∵BC是⊙O的切线,
    ∴OB⊥BC,
    ∴∠OBA+∠CBP=90°,
    ∵OC⊥OA,
    ∴∠A+∠APO=90°,
    ∵OA=OB,∠OAB=22°,
    ∴∠OAB=∠OBA=22°,
    ∴∠APO=∠CBP=68°,
    ∵∠APO=∠CPB,
    ∴∠CPB=∠ABP=68°,
    ∴∠OCB=180°-68°-68°=44°,
    故答案为:44°
    点睛:此题考查了切线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.
    9. 如图,菱形ABOC的AB,AC分别与⊙O相切于点D、E,若点D是AB的中点,则∠DOE=__________.

    【来源】安徽省2018年中考数学试题
    【答案】60°
    【解析】【分析】由AB,AC分别与⊙O相切于点D、E,可得∠BDO=∠ADO=∠AEO=90°,根据已知条件可得到BD=OB,在Rt△OBD中,求得∠B=60°,继而可得∠A=120°,再利用四边形的内角和即可求得∠DOE的度数.
    【详解 】∵AB,AC分别与⊙O相切于点D、E,
    ∴∠BDO=∠ADO=∠AEO=90°,
    ∵四边形ABOC是菱形,∴AB=BO,∠A+∠B=180°,
    ∵BD=AB,
    ∴BD=OB,
    在Rt△OBD中,∠ODB=90°,BD=OB,∴cos∠B=,∴∠B=60°,
    ∴∠A=120°,
    ∴∠DOE=360°-120°-90°-90°=60°,
    故答案为:60°.
    【点睛】本题考查了切线的性质,菱形的性质,解直角三角形的应用等,熟练掌握相关的性质是解题的关键.
    10. (2019•江苏苏州•3分)如图,为的切线,切点为,连接,与交于点,延长与交于点,连接,若,则的度数为 .

    【答案】
    【解答】切线性质得到





    11. (2018上海中考模拟)如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是   .

    【答案】8<r<10
    【解析】
    试题分析:如图1,当C在⊙A上,⊙B与⊙A内切时,
    ⊙A的半径为:AC=AD=4,
    ⊙B的半径为:r=AB+AD=5+3=8;

    如图2,当B在⊙A上,⊙B与⊙A内切时,
    ⊙A的半径为:AB=AD=5,
    ⊙B的半径为:r=2AB=10;
    ∴⊙B的半径长r的取值范围是:8<r<10.
    故答案为:8<r<10.
    考点:1.圆与圆的位置关系;2.点与圆的位置关系;3.勾股定理.
    三、解答题
    12. (新疆乌鲁木齐市第九十八中学2018届九年级下学期第一次模拟考试)如图,已知AB为⊙O的直径,点E在⊙O上,∠EAB的平分线交⊙O于点C,过点C作AE的垂线,垂足为D,直线DC与AB的延长线交于点P.

    (1)判断直线PC与⊙O的位置关系,并说明理由;
    (2)若tan∠P=,AD=6,求线段AE的长.
    【答案】(1)PC是⊙O的切线;(2)
    连接OC.∵AC平分∠EAB,∴∠EAC=∠CAB.又∵∠CAB=∠ACO,∴∠EAC=∠OCA,∴OC∥AD.∵AD⊥PD,∴∠OCP=∠D=90°,∴PC是⊙O的切线.
    (2)连接BE.在Rt△ADP中,∠ADP=90°,AD=6,tan∠P=,∴PD=8,AP=10,设半径为r.∵OC∥AD,∴,即,解得r=.∵AB是直径,∴∠AEB=∠D=90°,∴BE∥PD,∴AE=AB•sin∠ABE=AB•sin∠P=×=.

    点睛:本题考查了直线与圆的位置关系.解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.
    13. (天津市和平区 汇文中学 2018年九年级数学中考夯基卷)如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.
    (1)求证:直线CP是⊙O的切线;
    (2)若BC=2,sin∠BCP=,求⊙O的半径及△ACP的周长.

    【答案】详见解析.
    【解析】试题分析: (1)欲证明直线CP是的切线,只需证得CP⊥AC;
    (2)利用正弦三角函数的定义求得 的直径则 的半径为

    ∵∠ABC=∠ACB,∴AB=AC,
    ∵AC是的直径,∴AN⊥BC,
    ∴∠CAN=∠BAN,BN=CN,
    ∵∠CAB=2∠BCP,
    ∴∠CAN=∠BCP.
    ∵∠CAN+∠ACN=,
    ∴∠BCP+∠ACN=,
    ∴CP⊥AC,
    ∵OC是的半径
    ∴CP是的切线;
    (2)
    ∴AC=5,
    ∴的半径为
    如图,过点B作BD⊥AC于点D.
    由(1)得
    在Rt△CAN中,
    在△CAN和△CBD中,

    ∴△CAN∽△CBD,

    ∴BD=4.
    在Rt△BCD中,
    ∴AD=AC−CD=5−2=3,
    ∵BD∥CP,


    ∴△APC的周长是AC+PC+AP=20.
    14. 如图,在中,,平分交于点,为上一点,经过点,的分别交AB,AC于点E,F,连接OF交AD于点G.

    (1)求证:是的切线;
    (2)设,,试用含的代数式表示线段的长;
    (3)若,,求的长.
    【来源】四川省成都市2018年中考数学试题
    【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.
    【解析】分析:(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;
    (2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;
    (3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.
    详解:(1)证明:如图,连接OD,

    ∵AD为∠BAC的角平分线,
    ∴∠BAD=∠CAD,
    ∵OA=OD,
    ∴∠ODA=∠OAD,
    ∴∠ODA=∠CAD,
    ∴OD∥AC,
    ∵∠C=90°,
    ∴∠ODC=90°,
    ∴OD⊥BC,
    ∴BC为圆O的切线;

    (3)连接EF,在Rt△BOD中,sinB=,
    设圆的半径为r,可得,
    解得:r=5,
    ∴AE=10,AB=18,
    ∵AE是直径,
    ∴∠AFE=∠C=90°,
    ∴EF∥BC,
    ∴∠AEF=∠B,
    ∴sin∠AEF=,
    ∴AF=AE•sin∠AEF=10×,
    ∵AF∥OD,
    ∴,即DG=AD,
    ∵AD=,
    则DG=×=.
    点睛:此题属于圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.
    15. 如图,已知P为锐角∠MAN内部一点,过点P作PB⊥AM于点B,PC⊥AN于点C,以PB为直径作⊙O,交直线CP于点D,连接AP,BD,AP交⊙O于点E.

    (1)求证:∠BPD=∠BAC.
    (2)连接EB,ED,当tan∠MAN=2,AB=2时,在点P的整个运动过程中.
    ①若∠BDE=45°,求PD的长;
    ②若△BED为等腰三角形,求所有满足条件的BD的长;
    (3)连接OC,EC,OC交AP于点F,当tan∠MAN=1,OC//BE时,记△OFP的面积为S1,△CFE的面积为S2,请写出的值.
    【来源】浙江省温州市2018年中考数学试卷
    【答案】(1)证明见解析;(2)①PD=2;当BD为2,3或时,△BDE为等腰三角形;(3)=
    【解析】分析: (1)根据垂直的定义得出∠ABP=∠ACP=90°,根据四边形的内角和得出∠BAC+∠BPC=180°,根据平角的定义得出∠BPD+∠BPC=180°,根据同角的余角相等得出∠BPD=∠BAC ;
    (2)①如图1,根据等腰直角三角形的性质得出BP=AB=2, 根据等角的同名三角函数值相等及正切函数的定义得出BP= PD,从而得出PD的长;②Ⅰ如图2,当BD=BE时,∠BED=∠BDE,故∠BPD=∠BPE=∠BAC根据等角的同名三角函数值相等得出tan∠BPE=2,根据正切函数的定义由AB=2,得出BP=, 根据勾股定理即可得出BD=2;Ⅱ如图3,当BE=DE时,∠EBD=∠EDB;由∠APB=∠BDE,∠DBE=∠APC,得出∠APB=∠APC

    详解:
    (1)解  :∵PB⊥AM,PC⊥AN
    ∴∠ABP=∠ACP=90°,
    ∴∠BAC+∠BPC=180°
    ∵∠BPD+∠BPC=180°
    ∴∠BPD=∠BAC  
    (2)解 ;①如图1,

    ∵∠APB=∠BDE=45°,∠ABP=90°,
    ∴BP=AB=
    ∵∠BPD=∠BAC
    ∴tan∠BPD=tan∠BAC
    ∴ =2
    ∴BP=PD
    ∴PD=2 
    ∴∠BPD=∠BPE=∠BAC
    ∴tan∠BPE=2
    ∵AB=
    ∴BP=
    ∴BD=2
    Ⅱ如图2,当BE=DE时,∠EBD=∠EDB

    ∵∠APB=∠BDE,∠DBE=∠APC
    ∴∠APB=∠APC
    ∴AC=AB=2
    过点B作BG⊥AC于点G,得四边形BGCD是矩形

    ∵AB= ,tan∠BAC=2
    ∴AG=2
    ∴BD=CG=
    Ⅲ如图4,当BD=DE时,∠DEB=∠DBE=∠APC 

    ∵∠DEB=∠DPB=∠BAC
    ∴∠APC=∠BAC
    设PD=x,则BD=2x
    ∴ =2
    ∴ =2
    ∴x=
    ∴BD=2x=3
    综上所述,当BD为2,3或 时,△BDE为等腰三角形
    (3),
    如图5,过点O作OH⊥DC于点H

    ∵tan∠BPD=tan∠MAN=1
    ∴BD=DP
    令BD=DP=2a,PC=2b得
    OH=a,CH=a+2b,AC=4a+2b
    由OC∥BE得∠OCH=∠PAC

    ∴OH·AC=CH·PC
    ∴a(4a+2b)=2b(a+2b)
    ∴a=b
    ∴CF=,OF=
    ∴.
    点睛: 本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、相似三角形的判定与性质、中位线定理、勾股定理及三角函数的应用等知识点.
    16. (2019湖北省鄂州市)(10分)如图,PA是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.
    (1)求证:PB是⊙O的切线;
    (2)求证:E为△PAB的内心;
    (3)若cos∠PAB=,BC=1,求PO的长.

    【分析】(1)连结OB,根据圆周角定理得到∠ABC=90°,证明△AOP≌△BOP,得到∠OBP=∠OAP,根据切线的判定定理证明;
    (2)连结AE,根据切线的性质定理得到∠PAE+∠OAE=90°,证明EA平分∠PAD,根据三角形的内心的概念证明即可;
    (3)根据余弦的定义求出OA,证明△PAO∽△ABC,根据相似三角形的性质列出比例式,计算即可.
    【解答】(1)证明:连结OB,
    ∵AC为⊙O的直径,
    ∴∠ABC=90°,
    ∵AB⊥PO,
    ∴PO∥BC
    ∴∠AOP=∠C,∠POB=∠OBC,
    OB=OC,
    ∴∠OBC=∠C,
    ∴∠AOP=∠POB,
    在△AOP和△BOP中,

    ∴△AOP≌△BOP(SAS),
    ∴∠OBP=∠OAP,
    ∵PA为⊙O的切线,
    ∴∠OAP=90°,
    ∴∠OBP=90°,
    ∴PB是⊙O的切线;
    (2)证明:连结AE,
    ∵PA为⊙O的切线,
    ∴∠PAE+∠OAE=90°,
    ∵AD⊥ED,
    ∴∠EAD+∠AED=90°,
    ∵OE=OA,
    ∴∠OAE=∠AED,
    ∴∠PAE=∠DAE,即EA平分∠PAD,
    ∵PA、PD为⊙O的切线,
    ∴PD平分∠APB
    ∴E为△PAB的内心;
    (3)解:∵∠PAB+∠BAC=90°,∠C+∠BAC=90°,
    ∴∠PAB=∠C,
    ∴cos∠C=cos∠PAB=,
    在Rt△ABC中,cos∠C===,
    ∴AC=,AO=,
    ∵△PAO∽△ABC,
    ∴,
    ∴PO===5.
    17. (2019•四川省凉山州•8分)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.
    (1)求证:DF是⊙O的切线;
    (2)若OB=BF,EF=4,求AD的长.

    【分析】(1)连接OD,由AB为⊙O的直径得∠BDC=90°,根据BE=EC知∠1=∠3、由OD=OB知∠2=∠4,根据BC是⊙O的切线得∠3+∠4=90°,即∠1+∠2=90°,得证;
    (2)根据直角三角形的性质得到∠F=30°,BE=EF=2,求得DE=BE=2,得到DF=6,根据三角形的内角和得到OD=OA,求得∠A=∠ADO=BOD=30°,根据等腰三角形的性质即可得到结论.
    【解答】解:(1)如图,连接OD,BD,
    ∵AB为⊙O的直径,
    ∴∠ADB=∠BDC=90°,
    在Rt△BDC中,∵BE=EC,
    ∴DE=EC=BE,
    ∴∠1=∠3,
    ∵BC是⊙O的切线,
    ∴∠3+∠4=90°,
    ∴∠1+∠4=90°,
    又∵∠2=∠4,
    ∴∠1+∠2=90°,
    ∴DF为⊙O的切线;
    (2)∵OB=BF,
    ∴OF=2OD,
    ∴∠F=30°,
    ∵∠FBE=90°,
    ∴BE=EF=2,
    ∴DE=BE=2,
    ∴DF=6,
    ∵∠F=30°,∠ODF=90°,
    ∴∠FOD=60°,
    ∵OD=OA,
    ∴∠A=∠ADO=BOD=30°,
    ∴∠A=∠F,
    ∴AD=DF=6.

    相关学案

    中考数学《一轮专题讲义》(41专题)第02讲 实数的计算(解析版)学案: 这是一份中考数学《一轮专题讲义》(41专题)第02讲 实数的计算(解析版)学案,共13页。学案主要包含了实数的运算,非负数的性质,实数的大小比较等内容,欢迎下载使用。

    中考数学《一轮专题讲义》(41专题)第12讲 位置与坐标(解析版)学案: 这是一份中考数学《一轮专题讲义》(41专题)第12讲 位置与坐标(解析版)学案,共21页。学案主要包含了三象限夹角平分线上x与y相等,图形的坐标变化与对称,点的平移,点的坐标规律等内容,欢迎下载使用。

    中考数学《一轮专题讲义》(41专题)第23讲 视图与投影(解析版)学案: 这是一份中考数学《一轮专题讲义》(41专题)第23讲 视图与投影(解析版)学案,共14页。学案主要包含了辨别立体图形的三种视图,利用三视图求几何体的面积,由三视图确定物体的形状,由视图确定立方体的个数,利用三视图求几何体的体积等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map