- 6.9二元一次方程组及其解法 教案 教案 10 次下载
- 6.10 三元一次方程组及其解法 教案 教案 9 次下载
- 7.1线段的大小比较 课件PPT 课件 12 次下载
- 7.2画线段的和、差、倍 课件PPT 课件 14 次下载
- 7.3角的概念与表示 课件PPT 课件 13 次下载
数学沪教版 (五四制)6.11 一次方程组的应用教案
展开6.11一次方程组的应用
一教学目标
1.掌握应用二元一次方程组解决有关实际问题的基本步骤.
2.能正确找出等量关系,列二元一次方程组解应用题.
3 渗透方程思想
二 教学重点及难点:能正确的分析生活中的问题,从问题中找出相关的等量关系并转化成方程组
三教学过程设计
一) 情景引入
最近正在举行中国2010年上海世界博览会,世博展区无论白天晚上都非常漂亮,每天都有来自世界各地的很多人参观各世博场馆,大家参观兴致十分高昂,因此世博门票十分的畅销。
例1某售票窗口有参观上海世博会的平日普通票, 与平日优惠票出售,两种票的票价分别为160元,100元。一天,该窗口卖出普通票与优惠票共2200张,票务收入为34万元,问这两种票各卖出多少张?
师:你准备怎样求出普通票与优惠票的张数呢?
生:设一元,或设二元
教师可以启发学生思考下面的问题:
(1)优惠票可表示为(2200-x),你从那个关键句得来的?
(2)你是根据题中的那(些)关键语句中找出等量关系列这个方程(组)的?
普通票张数+优惠票张数=2200
160×普通票张数+100×优惠票张数=34万元
解法一:设普通票卖x张.则优惠票卖(2200-x)张
160x+100(2200-x)=340000
还有没有同学有其他想法?
解法二:设售出成人票x张,售出学生票y张
x+y=2200
160x+100y=340000
师:看来大家都不约而同的选择了利用方程思想来解决这个问题,而不是算术方法。能说说你们钟情于方程思想的理由吗?
从这个角度思考,解法一和解法二解都能求出普通票与优惠票这两个未知量,那个解法在思维上更直接一点呢?说说你的理由?
生:解法一,一个等量关系用来列设,用一个未知数表示另一个未知数。。。。。。方程思想思维上更顺畅,更直接,不用逆向思维
师生共同总结:方程思想是解决实际问题的一个有力工具。当问题中所求的未知数有两个时,通过寻找两个等量关系,设2个未知数列出两个不同的方程组成二元一次方程组来解题,思维上更简单,更直接。
二)例题分析
今天我们就来一起研究一下列一次方程组解应用题:请同学们一起读一下例2
例2、六年级(1)班、(2)班各有44人,两个班都有一些同学参加课外天文小组,(1)班参加天文小组的人数恰好是(2)班没有参加天文小组人数的 ,(2)班参加天文小组的人数恰好是(1)班没有参加天文小组人数的 ,问六年级(1)班、(2)班没有参加天文小组的各多少人?
师:大家先找找看,哪些语句中蕴含着与所求量有关的等量关系啊?
分析:根据题意可得到两个等量关系:
等量关系:
根据这个等量关系,你会怎么设啊?
设(1)班没有参加天文小组的有x人,(2)班有y人
( 若有人提出间接设元,给予表扬,但提出本题直接设元简单些)
思考:这个题目能通过列一元一次方程解决吗?为什么选择列二元一次方程组?
师生共同:有些应用题能用列方程组来解,也能用列方程来解。 如果当两个未知量之间的数量关系比较复杂隐蔽时,运用列一元一次方程求解则思维难度较高,列出的方程也较为复杂;如果设立两个元,往往可直接利用题目中所给的数量关系列出两个方程组成二元一次方程组求解, 这时列方程组解就显得优越.现在,让我们一起来把这个问题解答完,接下去该怎么解。。。。。?
通过例2,大家想想,列二元一次方程组解题的步骤有那些?
1审题
2设元
3列方程(组)
4解方程(组)
5检验并答
师:同学们需要注意的是,与利用一元一次方程解应用题的步骤基本相同,我们设了两个未知数,求2个未知数通常需要列几个方程?需要找出几个相关的等量关系?
好的开始时成功的一半,无论列方程还是方程组,最关键的都是“审题”,即找出已知量,未知量之间的等量关系。其次就是“设元”,这也是比较重要的一步。接着就是这步也比较重要,一定要根据等量关系来列出方程组。
然我们以一个题目为例一起研究一下。
三)练习
练习1引入适当的未知数,列出一次方程组表示下列各题中的等量关系
1).一个周长为142米长方形游泳池,长与宽差的2倍是58米,求长与宽各是多少?
师:1)大家看看本题中那些语句蕴含着等量关系? 2)等量关系是什么?
3)根据这两个等量关系,如何设未知数?根据等量关系能列出什么方程组?
刚才大家经过共同努力,根据等量关系设元后了列出方程组。
现在我要考考你们的个人领悟能力
请一个女同学按我们刚才说的方法分析一下,讲的好坏由男同学的掌声决定。
2 )甲乙两仓库共有大米108吨,甲库有大米x吨,乙库有大米y吨,从甲仓库运6吨到乙库后,乙库是甲库大米的2倍,求甲,乙仓库的各有大米多少吨?
这位同学讲的非常好,看来我低估了你们的能力,老师增加了一点点难度,看谁能快速的把方程组分析出来。
请一个男同学讲,讲的好坏由女同学的掌声决定。
3)从夏令营营地到学校,先下山再走平路。一少先队员骑自行车以每小时12千米的速度下山,以每小时9千米的速度通过平路,到学校共用了55分钟。回来时,通过平路的速度不变,但以每小时6千米的速度上山,回营地共花去了1小时10分钟,山路与平路各有多少米?
(通过三个题目的练习,锻炼学生将实际问题抽象成方程组的能力。)
练习2
刚才是个别同学体现了他高超的分析能力,但大家会才是真的会,但老师希望看到每个同学是都能够掌握分析方法。请独立完整的完成此题。
张老师准备去易买得买一些文具作为班级奖品,这次买奖品的预算是120元,如果买2本笔记本,9套中考套装笔,则正好用完预算。如果买8本笔记本,7套中考套装笔,则超预算12元,问笔记本与中考套装笔的单价各是多少?
(本题让学生按完整步骤解出题目)
看来普通的三星级题已经难不倒大家了,老师现在把题目增加一个星级,看看那些人同学能顺利过关.。
四)拓展练习
练习3 学生课桌装配车间共有木工9人,每个木工一天能装配双人桌4张或单人椅10把,怎样分配工作能使一天装配的课桌椅配套?
变式训练:若两张双人桌合并后安排5个同学,怎样分配工作能使一天装配的课桌椅配套?
老师先解释一下分配工作,这里指每个工人都会装双人桌和单人椅子,不过分配工作后每个工人只装一样,要么桌子,要么椅子。分析:此题的相等关系不明显,应启发学生认真思考,找到第二个相等关系.
五小结:谈谈今天的收获
1.列二元一次方程组的步骤
2.方程思想
为下节课做准备提问:一名篮球队员在一场比赛中15投10中得20分,投进两分球的个数是投进三分球个数的3倍.问:这名篮球队员投中了几个三分球?几个两分球?罚中了几个球?
大家看,这个题目求几个量?
设三个未知数,就需列三个方程组,需有三个等量关系
六作业。练习册 6.11
初中1.3 二元一次方程组的应用教学设计: 这是一份初中<a href="/sx/tb_c24992_t8/?tag_id=27" target="_blank">1.3 二元一次方程组的应用教学设计</a>,共5页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。
初中1.4 三元一次方程组教案: 这是一份初中<a href="/sx/tb_c95239_t8/?tag_id=27" target="_blank">1.4 三元一次方程组教案</a>,共6页。教案主要包含了情景展示,温故导新,教学新知,启智赋能,基础巩固,能力提升,归纳总结等内容,欢迎下载使用。
鲁教版 (五四制)七年级下册3 二元一次方程组的应用教案: 这是一份鲁教版 (五四制)七年级下册3 二元一次方程组的应用教案,共7页。教案主要包含了里程碑上的数,例题讲解,随堂练习等内容,欢迎下载使用。