终身会员
搜索
    上传资料 赚现金
    2012年高中重点中学数学教案 第17课时《解斜三角形应用举例》(1) 湘教版必修2
    立即下载
    加入资料篮
    2012年高中重点中学数学教案 第17课时《解斜三角形应用举例》(1) 湘教版必修201
    2012年高中重点中学数学教案 第17课时《解斜三角形应用举例》(1) 湘教版必修202
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学必修25.3简单的三角恒等变换教案及反思

    展开
    这是一份数学必修25.3简单的三角恒等变换教案及反思,共4页。教案主要包含了复习引入,讲解范例,课堂练习,课后作业,板书设计,课后记等内容,欢迎下载使用。

    1会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;
    2搞清利用解斜三角形可解决的各类应用问题的基本图形和基本等量关系;
    3理解各种应用问题中的有关名词、术语,如:坡度、俯角、仰角、方向角、方位角等;
    4通过解三角形的应用的学习,提高解决实际问题的能力
    教学重点:实际问题向数学问题的转化及解斜三角形的方法
    教学难点:实际问题向数学问题转化思路的确定
    授课类型:新授课
    课时安排:1课时
    教 具:多媒体、实物投影仪
    教学方法:启发式
    在教学中引导学生分析题意,分清已知与所求,根据题意画出示意图,并启发学生在解三角形时正确选用正、余弦定理
    教学过程:
    一、复习引入:
    1.正弦定理:
    2.余弦定理:

    3.解三角形的知识在测量、航海、几何、物理学等方面都有非常广泛的应用,如果我们抽去每个应用题中与生产生活实际所联系的外壳,就暴露出解三角形问题的本质,这就要提高分析问题和解决问题的能力及化实际问题为抽象的数学问题的能力下面,我们将举例来说明解斜三角形在实际中的一些应用
    二、讲解范例:
    例1 自动卸货汽车的车箱采用液压结构,设计时需要计算油泵顶杆BC的长度已知车箱的最大仰角为60°,油泵顶点B与车箱支点A之间的距离为1.95m,AB与水平线之间的夹角为6°20′,AC长为1.40m,计算BC的长(保留三个有效数字)
    分析:求油泵顶杆BC的长度也就是在△ABC内,求边长BC的问题,而根据已知条件,AC=1.40m,AB=1.95 m,∠BAC=60°+6°20′=66°20′相当于已知△ABC的两边和它们的夹角,所以求解BC可根据余弦定理解:由余弦定理,得
    BC2=AB2+AC2-2AB·ACcsA
    =1.952+1.402-2×1.95×1.40×cs66°20′=3.571
    ∴BC≈1.89 (m)
    答:油泵顶杆BC约长1.89 m
    评述:此题虽为解三角形问题的简单应用,但关键是把未知边所处的三角形找到,在转换过程中应注意“仰角”这一概念的意义,并排除题目中非数学因素的干扰,将数量关系从题目准确地提炼出来
    例2某渔船在航行中不幸遇险,发出求救信号,我海军舰艇在A处获悉后,立即测出该渔船在方位角为45°、距离A为10海里的C处,并测得渔船正沿方位角为105°的方向,以9海里/h的速度向某小岛B靠拢,我海军舰艇立即以21海里/h的速度前去营救,试问舰艇应按照怎样的航向前进?并求出靠近渔船所用的时间
    分析:设舰艇从A处靠近渔船所用的时间为x h,则利用余弦定理建立方程来解决较好,因为如图中的∠1,∠2可以求出,而AC已知,BC、AB均可用x表示,故可看成是一个已知两边夹角求第三边问题
    解:设舰艇从A处靠近渔船所用的时间为xh,则AB=21x海里,BC=9x 海里,AC=10 海里,∠ACB=∠1+∠2=45°+(180°-105°)=120°,
    根据余弦定理,可得
    AB2=AC2+BC2-2AC·BC·cs120°得
    (21x)2=102+(9x)2-2×10×9xcs120°,
    即36x2-9x2×10=0
    解得x1=,x2=- (舍去)
    ∴AB=21x=14,BC=9x=6
    再由余弦定理可得
    cs∠BAC=
    ∴∠BAC=21°47′,45°+21°47′=66°47′
    所以舰艇方位角为66°47′,小时即40分钟
    答:舰艇应以66°47′的方位角方向航行,靠近渔船则需要40分钟
    评述:解好本题需明确“方位角”这一概念,方位角是指由正北方向顺时针旋转到目标方向线的水平角,其范围是(0°,360°)
    在利用余弦定理建立方程求出x后,所求舰艇方位角就转化为一个已知三边求角的问题,故仍然利余弦定理
    例3用同样高度的两个测角仪AB和CD同时望见气球E在它们的正西方向的上空,分别测得气球的仰角是α和β,已知B、D间的距离为a,测角仪的高度是b,求气球的高度
    分析:在Rt△EGA中求解EG,只有角α一个条件,需要再有一边长被确定,而△EAC中有较多已知条件,故可在△EAC中考虑EA边长的求解,而在△EAC中有角β,∠EAC=180°-α两角与BD=a一边,故可以利用正弦定理求解EA
    解:在△ACE中,AC=BD=a,∠ACE=β,∠AEC=α-β,
    根据正弦定理,得AE=
    在Rt△AEG中,EG=AEsinα=
    ∴EF=EG+b=+b,
    答:气球的高度是+b
    评述:此题也可以通过解两个直角三角形来解决,思路如下:设EG=x,在Rt△EGA中,利用ctα表示AG;在Rt△EGC中,利用ctβ表示CG,而CG-AG=CA=BD=a,故可以求出EG,又GF=CD=b,故EF高度可求
    例4如图所示,已知半圆的直径AB=2,点C在AB的延长线上,BC=1,点P为半圆上的一个动点,以DC为边作等边△PCD,且点D与圆心O分别在PC的两侧,求四边形OPDC面积的最大值
    分析:要求四边形OPDC面积的最大值,这首先需要建立一个面积函数,问题是选谁作为自变量,注意到动点P在半圆上运动与∠POB大小变化之间的联系,自然引入∠POB=θ作为自变量建立函数关系四边形OPDC可以分成△OPC与等边△PDC,S△OPC可用·OP·OC·sinθ表示,而等边△PDC的面积关键在于边长求解,而边长PC可以在△POC中利用余弦定理表示,至于面积最值的获得,则通过三角函数知识解决
    解:设∠POB=θ,四边形面积为y,则在△POC中,由余弦定理得:
    PC2=OP2+OC2-2OP·OCcsθ=5-4csθ
    ∴y=S△OPC+S△PCD=+(5-4csθ)
    =2sin(θ-)+
    ∴当θ-=即θ=时,ymax=2+
    评述:本题中余弦定理为表示△PCD的面积,从而为表示四边形OPDC面积提供了可能,可见正、余弦定理不仅是解三角形的依据,一般地也是分析几何量之间关系的重要公式,要认识到这两个定理的重要性
    另外,在求三角函数最值时,涉及到两角和正弦公式sin(α+β)=sinαcsβ+csαsinβ的构造及逆用,应要求学生予以重视
    三、课堂练习:
    1如图,在海岸A处发现北偏东45°方向,距A处(-1)海里的B处有一艘走私船在A处北偏西75°方向,距A处2海里的C处的我方缉私船,奉命以10海里/时的速度追截走私船,此时走私船正以10海里/时的速度,从B处向北偏东30°方向逃窜问:辑私船沿什么方向行驶才能最快截获走私船?并求出所需时间
    解:设辑私船应沿CD方向行驶t小时,才能最快截获(在D点)走私船,
    则CD=10t海里,BD=10t海里
    ∵BC2=AB2+AC2-2AB·AC·csA
    =(-1)2+22-2(-1)·2cs120°=6, ∴BC=
    ∴∠ABC=45°,∴B点在C点的正东方向上,
    ∴∠CBD=90°+30°=120°
    ∴∠BCD=30°,∴∠DCE=90°-30°=60°
    由∠CBD=120°,∠BCD=30°得∠D=30°
    ∴BD=BC,即10t=
    ∴t= (小时)≈15(分钟)
    答:辑私船沿北偏东60°的方向行驶,才能最快截获走私船,需时约15分钟
    四、小结 通过本节学习,要求大家在了解解斜三角形知识在实际中的应用的同时,掌握由实际问题向数学问题的转化,并提高解三角形问题及实际应用题的能力
    五、课后作业:
    六、板书设计(略)
    七、课后记:
    相关教案

    高中数学湘教版必修24.1什么是向量第1课时教学设计及反思: 这是一份高中数学湘教版必修24.1什么是向量第1课时教学设计及反思,共5页。教案主要包含了复习引入,讲解新课,讲解范例,课堂练习,小结 ,课后作业,板书设计,试题等内容,欢迎下载使用。

    湘教版必修25.3简单的三角恒等变换教学设计: 这是一份湘教版必修25.3简单的三角恒等变换教学设计,共4页。教案主要包含了复习引入,讲解新课,讲解范例,课堂练习,课后作业,板书设计,课后记等内容,欢迎下载使用。

    湘教版5.2二倍角的三角函数教学设计及反思: 这是一份湘教版5.2二倍角的三角函数教学设计及反思,共6页。教案主要包含了复习引入,讲解范例,课堂练习,课后作业,板书设计,课后记等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map