中考数学《一轮专题讲义》(41专题)第08讲 一元二次方程(原卷版)学案
展开
这是一份中考数学《一轮专题讲义》(41专题)第08讲 一元二次方程(原卷版)学案,共8页。学案主要包含了一元二次方程及有关概念,一元二次方程的解法,一元二次方程的根的判别式,一元二次方程的根与系数的关系,一元二次方程的应用等内容,欢迎下载使用。
中考数学一轮复习讲义考点八:一元二次方程 聚焦考点☆温习理解一、一元二次方程及有关概念1. 一元二次方程:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2. 一般形式:ax2+bx+c=0(其中a、b、c为常数,a≠0),其中ax2、bx、c分别叫做二次项、一次项和常数项,a、b分别称为二次项系数和一次项系数.3. 一元二次方程必须具备三个条件:(1)必须是整式方程;(2)必须只含有1个未知数;(3)所含未知数的最高次数是2.【温馨提示】在一元二次方程的一般形式中要注意a≠0.因为当a=0时,不含有二次项,即不是一元二次方程.4. 一元二次方程的解:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根.二、一元二次方程的解法:解一元二次方程的基本思想——转化,即把一元二次方程转化为一元一次方程来求解.直接开平方法;配方法;公式法;因式分解法.三、一元二次方程的根的判别式对于一元二次方程ax2+bx+c=0(a≠0):(1)b2-4ac>0⇔方程有两个不相等的实数根;(2)b2-4ac=0⇔方程有两个的实数根;(3)b2-4ac<0⇔方程没有实数根.四、一元二次方程的根与系数的关系若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1,x2,则有x1+x2=,x1x2=.五、一元二次方程的应用1. 列一元二次方程解应用题的步骤和列一元一次方程(组)解应用题的步骤相同,即审、设、列、解、验答五步.2. 列一元二次方程解应用题中,经济类和面积类问题是常考类型,解决这些问题应掌握以下内容:(1)增长率等量关系:A.增长率=×100%;B.设a为原来量,m为平均增长率,n为增长次数,b为增长后的量,则a(1+m)n=b;当m为平均下降率,n为下降次数,b为下降后的量时,则有a(1-m)n=b.(2)利润等量关系:A.利润=售价-成本;B.利润率=利润成本×100%.(3)面积问题 名师点睛☆典例分类考点典例一、解一元二次方程【例1】(2018江苏省句容市月考)解下列方程:(有指定方法必须用指定方法)(1)(配方法); (2)(公式法)(3). (4). 【举一反三】1. (2018天津市宁河区联考)方程2x(x-3)=7(3-x)的根是( )A. x=3 B. x= C. x1=3,x2= D. x1=3,x2=- 2. (2017山东德州第15题)方程3x(x-1)=2(x-1)的根是 考点典例二、配方法【例2】用配方法把代数式3x-2x2-2化为a(x+m)2+n的形式,并说明不论x取何值,这个代数式的值总是负数.并求出当x取何值时,这个代数式的值最大.【答案】证明见解析;,-. 【举一反三】(2018山东省临沂市郯城县中考模拟)用配方法解下列方程,配方正确的是( )A. 2y2﹣4y﹣4=0可化为(y﹣1)2=4 B. x2﹣2x﹣9=0可化为(x﹣1)2=8C. x2+8x﹣9=0可化为(x+4)2=16 D. x2﹣4x=0可化为(x﹣2)2=4 考点典例三、一元二次方程根的判别式【例3】(2019•河北省•2分)小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是( )A.不存在实数根 B.有两个不相等的实数根 C.有一个根是x=﹣1 D.有两个相等的实数根 【举一反三】1. (2019•北京)关于x的方程x2–2x+2m–1=0有实数根,且m为正整数,求m的值及此时方程的根. 2. 关于x的方程有两个不相等的实数根,则k的取值范围是( )A.k≥0 B.k>0 C.k≥﹣1 D.k>﹣1 考点典例四、一元二次方程根与系数的关系【例4】(2019•广东广州•3分)关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0有两个实数根x1,x2,若(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,则k的值( )A.0或2 B.﹣2或2 C.﹣2 D.2 【举一反三】1. (2019•湖北省荆门市•3分)已知x1,x2是关于x的方程x2+(3k+1)x+2k2+1=0的两个不相等实数根,且满足(x1﹣1)(x2﹣1)=8k2,则k的值为 1 .【分析】根据根与系数的关系结合(x1﹣1)(x2﹣1)=8k2,可得出关于k的一元二次方程,解之即可得出k的值,根据方程的系数结合根的判别式△>0,可得出关于k的一元二次不等式,解之即可得出k的取值范围,进而即可确定k值,此题得解. 2. (2019•湖北省鄂州市•3分)关于x的一元二次方程x2﹣4x+m=0的两实数根分别为x1、x2,且x1+3x2=5,则m的值为( )A. B. C. D.0 考点典例五、一元二次方程的应用【例5】(2019•四川省达州市•3分)某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是( )A.2500(1+x)2=9100 B.2500(1+x%)2=9100 C.2500(1+x)+2500(1+x)2=9100 D.2500+2500(1+x)+2500(1+x)2=9100 【举一反三】1. (2019•广西北部湾经济区•3分)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为( )A.(30﹣x)(20﹣x)=×20×30 B.(30﹣2x)(20﹣x)=×20×30 C.30x+2×20x=×20×30 D.(30﹣2x)(20﹣x)=×20×30 2. (2018•罗平县一模)某商店从厂家以每件18元购进一批商品出售,若每件售价为a元,则可售出(320﹣10a)件,但物价部门限定每件商品加价不能超过进价的25%,若商店要想获得400元利润,则售价应定为每件多少元?需售出这种商品多少件? 课时作业☆能力提升1. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为( )A. B. 1 C. D. 2. (2019•湖南怀化•4分)一元二次方程x2+2x+1=0的解是( )A.x1=1,x2=﹣1 B.x1=x2=1 C.x1=x2=﹣1 D.x1=﹣1,x2=2 3. 欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是( )A. 的长 B. 的长 C. 的长 D. 的长 4. (2017湖北咸宁第6题)已知为常数,点在第二象限,则关于的方程根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根 C.没有实数根 D.无法判断 5. (2018浙江杭州中考模拟)用配方法解方程时,配方结果正确的是( ) 6.(2019•河北省•2分)小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是( )A.不存在实数根 B.有两个不相等的实数根 C.有一个根是x=﹣1 D.有两个相等的实数根 7. (2018贵州六盘水中考模拟)三角形的两边的夹角为且满足方程,则第三边长的长是( )[来源:Z#xx#k.Com]A. B. C. D. 8.( 2019•山东省聊城市•3分)若关于x的一元二次方程(k﹣2)x2﹣2kx+k=6有实数根,则k的取值范围为( )A.k≥0 B. k≥0且k≠2 C.k≥ D.k≥且k≠2 9. 关于的方程有两个不相等的实数根,那么m的取值范围是__________. 10. 一元二次方程的两根为, ,则的值为____________ . 11.(2018安徽省淮南市中考模拟)方程x2+3x+1=0的解是x1=______,x2=______. 12.(2018苏科版南京栖霞区期末模拟)如果--8=0,则的值是________. 13.(2018届江苏省灌云县西片九年级上学期第二次月考)已知关于x的方程 x2﹣2x+k=0.(1)若原方程有实数根,求k的取值范围?(2)选取一个你喜欢的非零整数值作为k的值,使原方程有实数根,并解方程. 14. 已知关于的一元二次方程.(1)试证明:无论取何值此方程总有两个实数根;(2)若原方程的两根,满足,求的值. 15. 某地年为做好“精准扶贫”,投入资金万元用于异地安置,并规划投入资金逐年增加,年在年的基础上增加投入资金万元.(1)从年到年,该地投入异地安置资金的年平均增长率为多少?(2)在年异地安置的具体实施中,该地计划投入资金不低于万元用于优先搬迁租房奖励,规定前户(含第户)每户每天奖励元,户以后每户每天奖励元,按租房天计算,求年该地至少有多少户享受到优先搬迁租房奖励. 16. (2018•泸县校级一模)已知:关于x的方程x2﹣4mx+4m2﹣1=0.(1)不解方程:判断方程的根的情况;(2)若△ABC为等腰三角形,BC=5,另外两条边是方程的根,求此三角形的周长. 17. 在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1) 原计划是今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化和里程数至少是多少千米?(2) 到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1 : 2,且里程数之比为2 : 1,为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值. 18.(2019•湖北宜昌•10分)HW公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2800万块,生产了2800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.
相关学案
这是一份中考数学《一轮专题讲义》(41专题)第02讲 实数的计算(原卷版)学案,共7页。学案主要包含了实数的运算,非负数的性质,实数的大小比较等内容,欢迎下载使用。
这是一份中考数学《一轮专题讲义》(41专题)第09讲 分式方程(原卷版)学案,共6页。学案主要包含了判断方程为分式方程,解分式方程,分式方程的解,分式方程的应用等内容,欢迎下载使用。
这是一份中考数学《一轮专题讲义》(41专题)第19讲 统计的应用(原卷版)学案,共12页。学案主要包含了条形统计图与折线统计图,扇形统计图,频数分布直方图,利用统计量解决实际问题等内容,欢迎下载使用。