选修2-12.2椭圆导学案
展开学习目标
1.根据椭圆的方程研究曲线的几何性质;
2.椭圆与直线的关系.
学习过程
一、课前准备
(预习教材理P46~ P48,文P40~ P41找出疑惑之处)
复习1: 椭圆的
焦点坐标是( )( ) ;
长轴长 、短轴长 ;
离心率 .
复习2:直线与圆的位置关系有哪几种?如何判定?
二、新课导学
※ 学习探究
问题1:想想生活中哪些地方会有椭圆的应用呢?
问题2:椭圆与直线有几种位置关系?又是如何确定?
反思:点与椭圆的位置如何判定?
※ 典型例题
例1 一种电影放映灯泡的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分.过对称轴的截口是椭圆的一部分,灯丝位于椭圆的一个焦点上,片门位于另一个焦点上,由椭圆一个焦点发出的光线,经过旋转椭圆面反射后集中到另一个焦点,已知,,,试建立适当的坐标系,求截口所在椭圆的方程.
变式:若图形的开口向上,则方程是什么?
小结:①先化为标准方程,找出 ,求出;
②注意焦点所在坐标轴.
(理)例2 已知椭圆,直线:
。椭圆上是否存在一点,它到直线的距离最小?最小距离是多少?
变式:最大距离是多少?
动手试试
练1已知地球运行的轨道是长半轴长
,离心率的椭圆,且太阳在这个椭圆的一个焦点上,求地球到太阳的最大和最小距离.
练2.经过椭圆的左焦点作倾斜角为的直线,直线与椭圆相交于两点,求的长.
三、总结提升
※ 学习小结
1 .椭圆在生活中的运用;
2 .椭圆与直线的位置关系:
相交、相切、相离(用判定).
※ 知识拓展
直线与椭圆相交,得到弦,
弦长
其中为直线的斜率,是两交点坐标.
学习评价
※ 自我评价 你完成本节导学案的情况为( ).
A. 很好 B. 较好 C. 一般 D. 较差
※ 当堂检测(时量:5分钟 满分:10分)计分:
1.设是椭圆 ,到两焦点的距离之差为,则是( ).
A.锐角三角形 B.直角三角形
C.钝角三角形 D.等腰直角三角形
2.设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点,若△F1PF2为等腰直角三角形,则椭圆的离心率是( ).
A. B. C. D.
3.已知椭圆的左、右焦点分别为,点P在椭圆上,若P、F1、F2是一个直角三角形的三个顶点,则点P到轴的距离为( ).
A. B. 3 C. D.
4.椭圆的焦距、短轴长、长轴长组成一个等到比数列,则其离心率为 .
5.椭圆的焦点分别是和,过原点作直线与椭圆相交于两点,若的面积是,则直线的方程式是 .
课后作业
求下列直线与椭圆的交点坐标.
2.若椭圆,一组平行直线的斜率是
⑴这组直线何时与椭圆相交?
⑵当它们与椭圆相交时,这些直线被椭圆截得的线段的中点是否在一直线上?
2.2.2椭圆的简单几何性质导学案——高二上学期数学人教A版选修2-1: 这是一份2.2.2椭圆的简单几何性质导学案——高二上学期数学人教A版选修2-1,共6页。学案主要包含了学习过程,跟踪训练1,跟踪训练2等内容,欢迎下载使用。
人教版新课标A选修2-12.4抛物线学案: 这是一份人教版新课标A选修2-12.4抛物线学案,共4页。学案主要包含了课前准备,新课导学,总结提升等内容,欢迎下载使用。
数学选修2-12.4抛物线导学案: 这是一份数学选修2-12.4抛物线导学案,共4页。学案主要包含了课前准备,新课导学,总结提升等内容,欢迎下载使用。