|教案下载
搜索
    上传资料 赚现金
    《独立性检验的基本思想及其初步应用》教案2
    立即下载
    加入资料篮
    《独立性检验的基本思想及其初步应用》教案201
    《独立性检验的基本思想及其初步应用》教案202
    《独立性检验的基本思想及其初步应用》教案203
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教版新课标A选修1-21.2独立性检验的基本思想及其初步应用教学设计

    展开
    这是一份高中数学人教版新课标A选修1-21.2独立性检验的基本思想及其初步应用教学设计,共8页。教案主要包含了教学内容与教学对象分析,教学策略,教学过程等内容,欢迎下载使用。

    3.2 独立性检验的基本思想及其初步应用

    (共计3课时)

    授课类型:新授课

     

    一、教学内容与教学对象分析

    通过典型案例,学习下列一些常用的统计方法,并能初步应用这些方法解决一些实际问题。

               通过对典型案例(如患肺癌与吸烟有关吗等)的探究。了解独立性检验(只要求2×2列联表)的基本思想、方法及初步应用。

               通过对典型案例(如人的体重与身高的关系等)的探究,了解回归的基本思想、         方法及其初步应用。

     

    . 学习目标

    1知识与技能

    通过本节知识的学习,了解独立性检验的基本思想和初步应用,能对两个分类变量是否有关做出明确的判断。明确对两个分类变量的独立性检验的基本思想具体步骤,会对具体问题作出独立性检验。

    2过程与方法

    在本节知识的学习中,应使学生从具体问题中认识进行独立性检验的作用及必要性,树立学好本节知识的信心,在此基础上学习三维柱形图和二维柱形图,并认识它们的基本作用和存在的不足,从而为学习下面作好铺垫,进而介绍K的平方的计算公式和K的平方的观测值R的求法,以及它们的实际意义。从中得出判断“XY有关系的一般步骤及利用独立性检验来考察两个分类变量是否有关系,并能较准确地给出这种判断的可靠程度的具体做法和可信程度的大小。最后介绍了独立性检验思想的综合运用。

    3情感、态度与价值观

    通过本节知识的学习,首先让学生了解对两个分类博变量进行独立性检验的必要性和作用,并引导学生注意比较与观测值之间的联系与区别,从而引导学生去探索新知识,培养学生全面的观点和辨证地分析问题,不为假想所迷惑,寻求问题的内在联系,培养学生学习数学、应用数学的良好的数学品质。加强与现实生活相联系,从对实际问题的分析中学会利用图形分析、解决问题及用具体的数量来衡量两个变量之间的联系,学习用图形、数据来正确描述两个变量的关系。明确数学在现实生活中的重要作用和实际价值。教学中,应多给学生提供自主学习、独立探究、合作交流的机会。养成严谨的学习态度及实事求是的分析问题、解决问题的科学世界观,并会用所学到的知识来解决实际问题。

    .教学重点、难点

    教学重点:理解独立性检验的基本思想;独立性检验的步骤。

    教学难点1、理解独立性检验的基本思想;

    2、了解随机变量K2的含义;

    3、独立性检验的步骤。

    四、教学策略

    教学方法:诱思探究教学法

    学习方法:自主探究、观察发现、合作交流、归纳总结。

    教学手段:多媒体辅助教学

     

    、教学过程

    对于性别变量,其取值为男和女两种.这种变量的不同表示个体所属的不同类别,像这类变量称为分类变量.在现实生活中,分类变量是大量存在的,例如是否吸烟,宗教信仰,国籍,等等.在日常生活中,我们常常关心两个分类变量之间是否有关系.例如,吸烟与患肺癌是否有关系?性别对于是否喜欢数学课程有影响?等等.

    为调查吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果(单位:人)

    表3-7 吸烟与肺癌列联表

     

    不患肺癌

    患肺癌

    总计

    不吸烟

    7775

    42

    7817

    吸烟

    2099

    49

    2148

    总计

    9874

    91

    9965

    那么吸烟是否对患肺癌有影响吗?

    像表3一7 这样列出的两个分类变量的频数表,称为列联表.由吸烟情况和患肺癌情况的列联表可以粗略估计出:在不吸烟者中,有0.54 %患有肺癌;在吸烟者中,有2.28%患有肺癌.因此,直观上可以得到结论:吸烟者和不吸烟者患肺癌的可能性存在差异.

    与表格相比,三维柱形图和二维条形图能更直观地反映出相关数据的总体状况.图3. 2 一1 是列联表的三维柱形图,从中能清晰地看出各个频数的相对大小.

     

    图3.2一2 是叠在一起的二维条形图,其中浅色条高表示不患肺癌的人数,深色条高表示患肺癌的人数.从图中可以看出,吸烟者中患肺癌的比例高于不吸烟者中患肺癌的比例.

    为了更清晰地表达这个特征,我们还可用如下的等高条形图表示两种情况下患肺癌的比例.如图3.2一3 所示,在等高条形图中,浅色的条高表示不患肺癌的百分比;深色的条高表示患肺癌的百分比.

    通过分析数据和图形,我们得到的直观印象是吸烟和患肺癌有关.那么我们是否能够以一定的把握认为吸烟与患肺癌有关呢?

    为了回答上述问题,我们先假设

    H0:吸烟与患肺癌没有关系.用A表示不吸烟, B表示不患肺癌,则吸烟与患肺癌没有关系独立,即假设 H0等价于

    PAB)=P(A)+P(B) .

    把表3一7中的数字用字母代替,得到如下用字母表示的列联表:

    表3-8 吸烟与肺癌列联表

     

    不患肺癌

    患肺癌

    总计

    不吸烟

    a

    b

    a+b

    吸烟

    c

    d

    c+d

    总计

    a+c

    b+d

    a+b+c+d

     

    在表3一8中,a恰好为事件AB发生的频数;a+b 和a+c恰好分别为事件A和B发生的频数.由于频率近似于概率,所以在H0成立的条件下应该有

    ,

    其中为样本容量, (a+b+c+d)(a+b)(a+c) ,

    即adbc.

    因此,|ad-bc|越小,说明吸烟与患肺癌之间关系越弱;|ad -bc|越大,说明吸烟与患肺癌之间关系越强.

    为了使不同样本容量的数据有统一的评判标准,基于上面的分析,我们构造一个随机变量

                                      (1)

    其中为样本容量.

    若 H0 成立,即吸烟与患肺癌没有关系,则 K 应该很小.根据表3一7中的数据,利用公式(1)计算得到 K 的观测值为

    ,

    这个值到底能告诉我们什么呢?

    统计学家经过研究后发现,在 H0成立的情况下,

    .                                     (2)

     (2)式说明,在H0成立的情况下,的观测值超过 6. 635 的概率非常小,近似为0 . 01,是一个小概率事件.现在的观测值56.632 ,远远大于6. 635,所以有理由断定H0不成立,即认为吸烟与患肺癌有关系.但这种判断会犯错误,犯错误的概率不会超过0.01,即我们有99%的把握认为吸烟与患肺癌有关系 .

    在上述过程中,实际上是借助于随机变量的观测值建立了一个判断H0是否成立的规则:

    如果6. 635,就判断H0不成立,即认为吸烟与患肺癌有关系;否则,就判断H0成立,即认为吸烟与患肺癌没有关系.

    在该规则下,把结论H0 成立错判成H0 不成立的概率不会超过

    ,

    即有99%的把握认为从不成立.

    上面解决问题的想法类似于反证法.要确认是否能以给定的可信程度认为两个分类变量有关系,首先假设该结论不成立,即

     H0:两个分类变量没有关系

    成立.在该假设下我们所构造的随机变量应该很小.如果由观测数据计算得到的的观测值k很大,则在一定可信程度上说明H0不成立,即在一定可信程度上认为两个分类变量有关系;如果k的值很小,则说明由样本观测数据没有发现反对H0 的充分证据.

    怎样判断的观测值 k 是大还是小呢?这仅需确定一个正数,当时就认为 的观测值k大.此时相应于的判断规则为:

    如果,就认为两个分类变量之间有关系;否则就认为两个分类变量之间没有关系.

    我们称这样的为一个判断规则的临界值.按照上述规则,把两个分类变量之间没有关系错误地判断为两个分类变量之间有关系的概率为.

    在实际应用中,我们把解释为有的把握认为两个分类变量之间有关系;把解释为不能以的把握认为两个分类变量之间有关系,或者样本观测数据没有提供两个分类变量之间有关系的充分证据.上面这种利用随机变量来确定是否能以一定把握认为两个分类变量有关系的方法,称为两个分类变量的独立性检验

        利用上面结论,你能从列表的三维柱形图中看出两个变量是否相关吗?

    一般地,假设有两个分类变量XY,它们的可能取值分别为{}和{, 其样本频数列联表(称为2×2列联表)为:

    39  2×2列联表

     

     

    总计

     

     

     

     

     

     

    总计

     

    若要推断的论述为

    Hl:XY有关系,

    可以按如下步骤判断结论Hl 成立的可能性:

    1.通过三维柱形图和二维条形图,可以粗略地判断两个分类变量是否有关系,但是这种判断无法精确地给出所得结论的可靠程度.

    在三维柱形图中,主对角线上两个柱形高度的乘积ad 与副对角线上的两个柱形高度的乘积bc相差越大,H1成立的可能性就越大.

    在二维条形图中,可以估计满足条件X=的个体中具有Y=的个体所占的比例,也可以估计满足条件X=的个体中具有Y=,的个体所占的比例.两个比例的值相差越大,Hl 成立的可能性就越大.

    2.可以利用独立性检验来考察两个分类变量是否有关系,并且能较精确地给出这种判断的可靠程度.具体做法是:

    根据实际问题需要的可信程度确定临界值

    利用公式( 1 ) ,由观测数据计算得到随机变量的观测值;

    如果,就以的把握认为XY有关系;否则就说样本观测数据没有提供XY有关系的充分证据.

    在实际应用中,要在获取样本数据之前通过下表确定临界值:

    310

     

    0.50

     

    0.40

     

    0.25

     

    0.15

     

    0.10

     

    0.05

     

    0.025

     

    0.010

     

    0.005

     

    0.001

    0.455

    0.708

    1.323

    2.072

    1.323

    2.706

    3.841

    5.024

    6.635

    10.828

     

    (四)、举例

    1在某医院,因为患心脏病而住院的 665 名男性病人中,有 214 人秃顶,而另外 772 名不是因为患心脏病而住院的男性病人中有 175 人秃顶.

    (1)利用图形判断秃顶与患心脏病是否有关系.

    (2)能够以 99 %的把握认为秃顶与患心脏病有关系吗?为什么?

    解:根据题目所给数据得到如下列联表:

    (1)相应的三维柱形图如图3.24所示.比较来说,底面副对角线上两个柱体高度的乘积要大一些,可以在某种程度上认为秃顶与患心脏病有关.

    (2)根据列联表311中的数据,得到

    16.373>6 .

    因此有 99 %的把握认为秃顶与患心脏病有关 .

    2.为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表:

    312 性别与喜欢数学课程列联表

     

     

    喜欢数学课程

    喜欢数学课程

    总计

         37

         85

    122

         35

         143

    178

    总计

         72

         228

    300

     

    由表中数据计算得的观测值.能够以95%的把握认为高中生的性别与是否喜欢数学课程之间有关系吗?请详细阐明得出结论的依据.

    :可以有约95%以上的把握认为性别与喜欢数学课之间有关系.作出这种判断的依据是独立性检验的基本思想,具体过程如下:

    分别用a , b , c , d 表示样本中喜欢数学课的男生人数、不喜欢数学课的男生人数、喜欢数学课的女生人数、不喜欢数学课的女生人数.如果性别与是否喜欢数学课有关系,则男生中喜欢数学课的比例与女生中喜欢数学课的人数比例应该相差很多,即

    应很大.

    将上式等号右边的式子乘以常数因子

    ,

    然后平方得

       ,

    其中.因此越大,性别与喜欢数学课之间有关系成立的可能性越大.

    另一方面,在假设性别与喜欢数学课之间没有关系的前提下,事件A ={3. 841}的概率为P (3. 841) 0.05,

    因此事件 A 是一个小概率事件.而由样本数据计算得的观测值k=4.514,即小概率事件 A发生.因此应该断定性别与喜欢数学课之间有关系成立,并且这种判断结果出错的可能性约为5 %.所以,约有95 %的把握认为性别与喜欢数学课之间有关系.

     

    补充例题1:打鼾不仅影响别人休息,而且可能与患某种疾病有关,下表是一次调查所得的数据,试问:每一晚都打鼾与患心脏病有关吗?

     

     

    患心脏病

    未患心脏病

    合计

    每一晚都打鼾

    30

    224

    254

    不打鼾

    24

    1355

    1379

    合计

    54

    1579

    1633

     

    解:略。

     

    补充例题2: 对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行3年跟踪研究,调查他们是否又发作过心脏病,调查结果如下表所示:

     

     

    又发作过心脏病

    未发作过心脏病

    合计

    心脏搭桥手术

    39

    157

    196

    血管清障手术

    29

    167

    196

    合计

    68

    324

    392

     

    试根据上述数据比较两种手术对病人又发作心脏病的影响有没有差别。

     

    解略

     

    (四)  课堂小结

    1.知识梳理

    2.规律小结

    1)三维柱形图与二维条形图

    2)独立性检验的基本思想

    3)独立性检验的一般方法

     

    (五)  作业:

     

     

      课后反思:

    本节内容对独立性检验的探讨过程学生基本没什么困难,还有学生提出了新的探讨路径和思想,学生思维活泼!对独立性检验的作用,本节课也作了系统总结比较。

     

     

    相关教案

    高中3.2独立性检验的基本思想及其初步教案: 这是一份高中3.2独立性检验的基本思想及其初步教案,共9页。教案主要包含了问题情境,学生活动,建构数学,数学运用等内容,欢迎下载使用。

    人教版新课标A选修1-21.2独立性检验的基本思想及其初步应用第二课时教案: 这是一份人教版新课标A选修1-21.2独立性检验的基本思想及其初步应用第二课时教案,共1页。教案主要包含了新课等内容,欢迎下载使用。

    人教版新课标A选修1-21.2独立性检验的基本思想及其初步应用教案设计: 这是一份人教版新课标A选修1-21.2独立性检验的基本思想及其初步应用教案设计,共8页。教案主要包含了教学内容与教学对象分析,教学策略,教学过程等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map