高中数学人教版新课标A必修42.4 平面向量的数量积课文配套课件ppt
展开复习思考: 向量的加法 向量的减法 实数与向量的乘法 两个向量的数量积
5.6 平面向量的数量积及运算律
平面向量的数量积的定义
(1)两向量的数量积结果是一个数量,符号由夹角决定.
(3) a · b不能写成a×b ,a×b 表示向量的另一种运算.
与以往运算法则的区别及注意点
(2)前面所提到的力所做的功,就是力F与其作用下物体 产生的位移S的数量积F · S.
而向量的加法和减法的结果还是一个向量.
解: a ·b =|a | |b |csθ
练习1. 已知 | p | =8, | q |=6, 向量p 和 q 的夹角是 60°, 求 p · q.
练习2. 设| a |=12,| b |=9, a · b = − 54 , 求向量a和b的夹角 .
| b | csθ的几何图形及其表示的几何意义
, | b | csθ叫向量b 在a 方向上的投影.
θ为锐角时,| b | csθ>0
θ为钝角时,| b | csθ<0
θ为直角时,| b | csθ=0
平面向量数量积 a · b的几何意义
向量 a 与b 的数量积等于a 的长度 |a| 与b 在a 的方向上的投影| b | csθ的积.
(1)e · a=a · e=| a | cs
(5)| a · b| ≤| a | · | b |
设a ,b都是非零向量, e是与b方向相同的单位向量, 是a与e的夹角,则
(用于计算向量的夹角)
1.若a =0,则对任一向量b ,有 a · b = 0.
2.若a ≠0,则对任一非零向量b ,有 a · b≠0.
3.若a ≠0,a · b =0,则 b = 0.
4.若a · b=0,则a 、 b中至少有一 个 为 0.
5.若a≠0,a · b= b · c,则 a= c.
6.若a · b = a · c ,则b≠c,当且仅当a =0 时成 立.
小结:(1)向量的数量积的物理模型是力的做功.(2) a · b 的结果是个数量.(3)利用数量积可以求两向量的夹角,特别是可以判定垂直.(4)二向量的夹角范围 [0,п].(5)五条性质要掌握.
作业: 1.课本P121 习题5.6 第2题,第3题,第6题 2. 《优化设计》第一课时
高中数学人教A版 (2019)必修 第二册6.2 平面向量的运算一等奖ppt课件: 这是一份高中数学人教A版 (2019)必修 第二册6.2 平面向量的运算一等奖ppt课件,文件包含人教A版2019高一必修2数学624平面向量的数量积课件ppt、人教A版2019高一必修2数学624平面向量的数量积教案doc等2份课件配套教学资源,其中PPT共27页, 欢迎下载使用。
人教A版 (2019)必修 第二册6.2 平面向量的运算示范课课件ppt: 这是一份人教A版 (2019)必修 第二册6.2 平面向量的运算示范课课件ppt,共34页。PPT课件主要包含了平面向量的数量积,点线距,点线距+三点共线,点线距+平行线,直径圆,半径圆,外接圆,线段+点线距,点线距+椭圆等内容,欢迎下载使用。
人教版新课标A必修31.2.2条件语句授课ppt课件: 这是一份人教版新课标A必修31.2.2条件语句授课ppt课件,文件包含122ppt、122doc等2份课件配套教学资源,其中PPT共43页, 欢迎下载使用。