终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    《变化率与导数-1.1.3导数的几何意义》教案7(人教A版选修2-2)

    立即下载
    加入资料篮
    《变化率与导数-1.1.3导数的几何意义》教案7(人教A版选修2-2)第1页
    《变化率与导数-1.1.3导数的几何意义》教案7(人教A版选修2-2)第2页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版新课标A选修2-21.1变化率与导数教学设计

    展开

    这是一份人教版新课标A选修2-21.1变化率与导数教学设计,共4页。
    教学目标
    1.了解平均变化率与割线斜率之间的关系;
    2.理解曲线的切线的概念;
    3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题;
    教学重点:曲线的切线的概念、切线的斜率、导数的几何意义;
    教学难点:导数的几何意义.
    教学过程:
    一.创设情景
    (一)平均变化率、割线的斜率
    (二)瞬时速度、导数
    我们知道,导数表示函数y=f(x)在x=x0处的瞬时变化率,反映了函数y=f(x)在x=x0附近的变化情况,导数的几何意义是什么呢?
    二.新课讲授
    (一)曲线的切线及切线的斜率:如图3.1-2,当沿着曲线趋近于点时,割线的变化趋势是什么?
    图3.1-2
    我们发现,当点沿着曲线无限接近点P即Δx→0时,割线趋近于确定的位置,这个确定位置的直线PT称为曲线在点P处的切线.
    问题:⑴割线的斜率与切线PT的斜率有什么关系?
    ⑵切线PT的斜率为多少?
    容易知道,割线的斜率是,当点沿着曲线无限接近点P时,无限趋近于切线PT的斜率,即
    说明:(1)设切线的倾斜角为α,那么当Δx→0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.
    这个概念: ①提供了求曲线上某点切线的斜率的一种方法;
    ②切线斜率的本质—函数在处的导数.
    (2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个.
    (二)导数的几何意义:
    函数y=f(x)在x=x0处的导数等于在该点处的切线的斜率,

    说明:求曲线在某点处的切线方程的基本步骤:
    ①求出P点的坐标;
    ②求出函数在点处的变化率 ,得到曲线在点的切线的斜率;
    ③利用点斜式求切线方程.
    (二)导函数:
    由函数f(x)在x=x0处求导数的过程可以看到,当时, 是一个确定的数,那么,当x变化时,便是x的一个函数,我们叫它为f(x)的导函数.记作:或,
    即:
    注:在不致发生混淆时,导函数也简称导数.
    (三)函数在点处的导数、导函数、导数 之间的区别与联系。
    1)函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。
    2)函数的导数,是指某一区间内任意点x而言的, 就是函数f(x)的导函数
    3)函数在点处的导数就是导函数在处的函数值,这也是 求函数在点处的导数的方法之一。
    三.典例分析
    例1:(1)求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.
    (2)求函数y=3x2在点处的导数.
    解:(1),
    所以,所求切线的斜率为2,因此,所求的切线方程为即
    (2)因为
    所以,所求切线的斜率为6,因此,所求的切线方程为即
    (2)求函数f(x)=在附近的平均变化率,并求出在该点处的导数.
    解:

    例2.(课本例2)如图3.1-3,它表示跳水运动中高度随时间变化的函数
    ,根据图像,请描述、比较曲线在、、附近的变化情况.
    解:我们用曲线在、、处的切线,刻画曲线在上述三个时刻附近的变化情况.
    当时,曲线在处的切线平行于轴,所以,在附近曲线比较平坦,几乎没有升降.
    当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减.
    当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减.
    从图3.1-3可以看出,直线的倾斜程度小于直线的倾斜程度,这说明曲线在附近比在附近下降的缓慢.
    例3.(课本例3)如图3.1-4,它表示人体血管中药物浓度(单位:)随时间(单位:)变化的图象.根据图像,估计时,血管中药物浓度的瞬时变化率(精确到).
    解:血管中某一时刻药物浓度的瞬时变化率,就是药物浓度在此时刻的导数,从图像上看,它表示曲线在此点处的切线的斜率.
    如图3.1-4,画出曲线上某点处的切线,利用网格估计这条切线的斜率,可以得到此时刻药物浓度瞬时变化率的近似值.
    作处的切线,并在切线上去两点,如,,则它的斜率为:
    所以
    下表给出了药物浓度瞬时变化率的估计值:
    四.课堂练习
    1.求曲线y=f(x)=x3在点处的切线;
    2.求曲线在点处的切线.
    五.回顾总结
    1.曲线的切线及切线的斜率;
    2.导数的几何意义
    六.布置作业0.2
    0.4
    0.6
    0.8
    药物浓度瞬时变化率
    0.4
    0
    -0.7
    -1.4

    相关教案

    高中数学人教版新课标B选修2-21.1.3导数的几何意义教学设计:

    这是一份高中数学人教版新课标B选修2-21.1.3导数的几何意义教学设计,共4页。

    高中数学人教版新课标A选修2-21.1变化率与导数教案:

    这是一份高中数学人教版新课标A选修2-21.1变化率与导数教案,共5页。

    高中数学人教版新课标A选修2-21.1变化率与导数教案:

    这是一份高中数学人教版新课标A选修2-21.1变化率与导数教案,共4页。教案主要包含了课前准备,新课导学,总结提升等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map