数学选修2-21.5定积分的概念导学案
展开⒈通过求曲边梯形的面积和变速直线运动的路程,了解定积分的背景;
⒉借助于几何直观定积分的基本思想,了解定积分的概念,能用定积分法求简单的定积分.
3.理解掌握定积分的几何意义;
教学重点:定积分的概念、定积分法求简单的定积分、定积分的几何意义.
教学难点:定积分的概念、定积分的几何意义.
教学过程:
一.前置复习:
1. 回忆前面曲边图形面积,变速运动的路程,变力做功等问题的解决方法,解决步骤:
2.对这四个步骤再以分析、理解、归纳,找出共同点.
二.新课讲授
1.定积分的概念 一般地,设函数在区间上连续,用分点
将区间等分成个小区间,每个小区间长度为(),在每个小区间上取一点,作和式:
如果无限接近于(亦即)时,上述和式无限趋近于常数,那么称该常数为函数在区间上的定积分。记为:
其中成为被积函数,叫做积分变量,为积分区间,积分上限,积分下限。
说明:(1)定积分是一个常数,即无限趋近的常数(时)称为,而不是.
(2)用定义求定积分的一般方法是:
(3)曲边图形面积: ;
变速运动路程;
变力做功
2.定积分的几何意义
分析:
2.定积分的性质
根据定积分的定义,不难得出定积分的如下性质:
性质1
性质2
性质3
性质4
说明:①推广:
②推广:
③性质解释:
性质4
性质1
三.典例分析
例1.计算定积分
四.课堂练习
计算下列定积分
1.
2.
3.课本 练习
五.回顾总结
1.定积分的概念、定积分法求简单的定积分、定积分的几何意义.
六.布置作业
§1.5.3定积分的概念教案
教学目标:
⒈通过求曲边梯形的面积和变速直线运动的路程,了解定积分的背景;
⒉借助于几何直观定积分的基本思想,了解定积分的概念,能用定积分法求简单的定积分.
3.理解掌握定积分的几何意义;
教学重点:定积分的概念、定积分法求简单的定积分、定积分的几何意义.
教学难点:定积分的概念、定积分的几何意义.
教学过程:
一.创设情景
复习:
1. 回忆前面曲边图形面积,变速运动的路程,变力做功等问题的解决方法,解决步骤:分割→以直代曲→求和→取极限(逼近
2.对这四个步骤再以分析、理解、归纳,找出共同点.
二.新课讲授
1.定积分的概念 一般地,设函数在区间上连续,用分点
将区间等分成个小区间,每个小区间长度为(),在每个小区间上取一点,作和式:
如果无限接近于(亦即)时,上述和式无限趋近于常数,那么称该常数为函数在区间上的定积分。记为:
其中成为被积函数,叫做积分变量,为积分区间,积分上限,积分下限。
说明:(1)定积分是一个常数,即无限趋近的常数(时)称为,而不是.
(2)用定义求定积分的一般方法是:①分割:等分区间;②近似代替:取点;③求和:;④取极限:
(3)曲边图形面积:;变速运动路程;
变力做功
2.定积分的几何意义
说明:一般情况下,定积分的几何意义是介于轴、函数的图形以及直线之间各部分面积的代数和,在轴上方的面积取正号,在轴下方的面积去负号.(可以先不给学生讲).
分析:一般的,设被积函数,若在上可取负值。
考察和式
不妨设
于是和式即为
阴影的面积—阴影的面积(即轴上方面积减轴下方的面积)
2.定积分的性质
根据定积分的定义,不难得出定积分的如下性质:
性质1
性质2 (其中k是不为0的常数) (定积分的线性性质)
性质3 (定积分的线性性质)性质4
(定积分对积分区间的可加性)
说明:①推广:
②推广:
③性质解释:
性质4
性质1
三.典例分析
例1.计算定积分
分析:所求定积分即为如图阴影部分面积,面积为。
1
2
y
x
即:
思考:若改为计算定积分呢?
改变了积分上、下限,被积函数在上出现了负值如何解决呢?(后面解决的问题)
四.课堂练习
计算下列定积分
1.
2.
5.课本 练习
五.回顾总结
1.定积分的概念、定积分法求简单的定积分、定积分的几何意义.
六.布置作业
数学选修2-21.5定积分的概念学案: 这是一份数学选修2-21.5定积分的概念学案,共2页。学案主要包含了学习目标,学习重难点,学习过程,学习检测,学习小结等内容,欢迎下载使用。
高中数学人教版新课标A选修2-21.5定积分的概念导学案及答案: 这是一份高中数学人教版新课标A选修2-21.5定积分的概念导学案及答案,
人教版新课标A选修2-21.5定积分的概念导学案: 这是一份人教版新课标A选修2-21.5定积分的概念导学案,