终身会员
搜索
    上传资料 赚现金
    《数学归纳法》学案3(新人教A版选修2-2)
    立即下载
    加入资料篮
    《数学归纳法》学案3(新人教A版选修2-2)01
    《数学归纳法》学案3(新人教A版选修2-2)02
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年2.3数学归纳法学案设计

    展开
    这是一份2020-2021学年2.3数学归纳法学案设计,共5页。学案主要包含了考点梳理等内容,欢迎下载使用。

    高考数学知识模块复习指导系列学案

    ——数学归纳法

    【考点梳理】

    一、考试内容

    1.数列,等差数列及其通项公式,等差数列前n项和公式。

    2.等比数列及其通项公式,等比数列前n项和公式。

    3.数列的极限及其四则运算。

    4.数学归纳法及其应用。

    二、考试要求

    1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项和。

    2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能够应用这些知识解决一些问题。

    3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能够运用这些知识解决一些问题。

    4.了解数列极限的定义,掌握极限的四则运算法则,会求公比的绝对值小于1的无穷等比数列前n项和的极限。

    5.了解数学归纳法的原理,并能用数学归纳法证明一些简单的问题。

    三、考点简析

    1.数列及相关知识关系表

    2.作用地位

    1)数列是函数概念的继续和延伸,是定义在自然集或它的子集{1,2,,n}上的函数。对于等差数列而言,可以把它看作自然数n一次函数,前n项和是自然数n二次函数。等比数列可看作自然数n指数函数。因此,学过数列后,一方面对函数概念加深了了解,拓宽了学生的知识范围;另一方面也为今后学习高等数学中的有关级数的知识和解决现实生活中的一些实际问题打下了基础。

    2)数列的极限这部分知识的学习,教给了学生求极限这一数学思路,为学习高等数学作好准备。另一方面,从数学方法来看,它是一种与以前学习的数学方法有所不同的全新方法,它有着现代数学思想,它把辩证唯物主义的思想引进了数学领域,因而,学习这部分知识不仅能接受一种新的数学思想方法,同时对培养学生唯物主义的世界观也起了一定的作用。

    3)数学归纳法是一种数学论证方法,学生学习了这部分知识后,又掌握了一种新的数学论证方法,开拓了知识领域,学会了新的技能;同时通过这部分知识的学习又学到一种数学思想。学好这部分知识,对培养学生逻辑思维的能力,计算能力,熟悉归纳、演绎的论证方法,提高分析、综合、抽象、概括等思维能力,都有很好的效果。

    4)数列、极限、数学归纳法这部分知识,在高考中占有相当的比重。这部分知识是必考的内容,而且几乎每年有一道综合题,其中1999年高考有两道综合题。

    3.等差数列

    1)定义:an+1an=d(常数d为公差)

    2)通项公式:an=a1+(n1)d

    3)前n项和公式:Sn==na1+d

    4)通项公式推广:an=am+(nm)d

    4.等差数列{an}的一些性质

    1)对于任意正整数n,都有an+1an=a2a1

    2{an}的通项公式:an=a2a1n+(2a1a2)

    3)对于任意正整数p,q,r,s,如果p+q=r+s,则有ap+aq=ar+as

    4)对于任意正整数p,q,r,如果p+r=2q,则有ap+ar=2aq

    5)对于任意正整数n>1,有2an=an1+an+1

    6)对于任意非零实数b若数列{ban}是等差数列,则数列{an}也是等差数列

    7)已知数列{bn}是等差数列,则{an±bn}也是等差数列

    8{a2n}{a2n1}{a3n}{a3n1}{a3n2}等都是等差数列

    9S3m=3S2mSm

    10)若Sn=Sm(mn),则Sm+n=0

    11)若Sp=q,Sq=p,则Sp+q=(p+q)(pq)

    12Sn=an2+bn,反之亦成立

    5.等比数列

    1)定义:=q(常数q为公比)

    2)通项公式:an=a1qn1

    3)前n项和公式

    Sn=

    特别注意q=1时,Sn=na1这一特殊情况。

    4)通项公式推广:an=am·qnm

    6.等比数列{an}的一些性质

    1)对于任意正整数n,均有=

    2)对于任意正整数pqrs,只要满足p+q=r+s,则ap·aq=ar·as

    3)对于任意正整数pqr,如果p+r=2q,则ap·ar=aq2

    4)对任意正整数n>1,有an2=an1·an+1

    5)对于任意非零实数b,{ban}也是等比数列

    6)已知{an}{bn}是等比数列,则{anbn}也是等比数列

    7)如果an>0,则{logaan}是等差数列

    8)数列{logaan}成等差数列,则an成等比数列

    9{a2n}{a2n1}{a3n1}{a3n2}{a3n}等都是等比数列

    7.数列极限

    1)极限的定义“ε—N

    2)极限的四则运算

    an=A bn=B,则

    (an±bn)= an±bn=A±B

    an·bn=an·bn=A·B

    an/bn=an/bn=(B0)

    3)两个重要极限

    =  

    rn=   

    中学数学中数列求极限最终都化成这两类的极限问题。由我们可以得到多项式除多项式的极限。

    =

    其中p,qN,a00b00

    4)无穷递缩等比数列各项和公式

    S=Sn=|q|<1

    应用:化循环小数为分数。

    8.递归数列

    数列的连续若干项满足的等量关系an+k=f(an+k1,an+k2,,an)称为数列的递归关系。由递归关系及k个初始值可以确定的一个数列叫做递归数列。如由an+1=2an+1,及a1=1,确定的数列即为递归数列。

    递归数列的通项的求法一般说来有以下几种:

    1)归纳、猜想、数学归纳法证明。

    2)迭代法。

    3)代换法。包括代数代换,对数代数,三角代数。

    4)作新数列法。最常见的是作成等差数列或等比数列来解决问题。

    9.数列求通项与和

    1)数列前n项和Sn与通项an的关系式:

    an=  

    2)求通项常用方法

    作新数列法。作等差数列与等比数列。

    累差叠加法。最基本的形式是:an=(anan1)+(an1+an2)++(a2a1)+a1

    归纳、猜想法。

    3)数列前n项和

    重要公式

    1+2++n=n(n+1)

    12+22++n2=n(n+1)(2n+1)

    13+23++n3=(1+2++n)2=n2(n+1)2

    等差数列中,Sm+n=Sm+Sn+mnd

    等比数列中,Sm+n=Sn+qnSm=Sm+qmSn

    裂项求和

    将数列的通项分成两个式子的代数和,即an=f(n+1)f(n),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法。用裂项法求和,需要掌握一些常见的裂项,如:

    =

    n·n=(n+1)!n!

    =cotαcot2α

    Cn1r1=CnrCn1r

    =等。

    错项相消法

    对一个由等差数列及等比数列对应项之积组成的数列的前n项和,常用错项相消法。

    并项求和

    把数列的某些项放在一起先求和,然后再求Sn

    数列求通项及和的方法多种多样,要视具体情形选用合适方法。

    10.数学归纳法

    1)数学归纳法的基本形式

    P(n)是关于自然数n的命题,若

    1°p(n0)成立(奠基);

    2°假设P(k)成立(kn0),若可以推出Pk+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立。

    2)数学归纳法的应用

    数学归纳法适用于有关自然数n的命题。具体来讲,数学归纳法常用来证明恒等式,不等式,数的整除性,几可中计数问题,数列的通项与和等。

    四、思想方法

    数列、极限、数学归纳法中,主要注意如下的基本思想方法:

    1.分类讨论思想。如等比数列的求和分公比等于1和不等于1两种情形;已知数列前n项和求通项分n=1n2两种情形;求极限时对两个参数进行大小比较的讨论等。

    2.函数思想。将数列视为定义域为自然数或其子集的函数。

    3.数形结合思想。如等差数列的通项公式和前n项和公式分别视为直线、二次曲线的方程。

    4.转化思想。如将非等差数列、非等比数列转化为等差数列、等比数列。

    5.基本量思想。如把首项及公差、公比视为等差数列、等比数列的基本量。

    6.构造思想。如由旧数列构造新数列。

    7.特殊化思想。为研究一般问题可先退化到特殊问题的研究。在这部分内容中,处处充满了由具体到抽象,由特殊到一般,由有限到无限的辩证法,这就要求我们在思考问题时要用辩证的观点,由具体认识抽象,由特殊窥见一般,由有限逼近无限。其中,我们常用的归纳——猜想——证明法就体现了这一点。

    8.一般化思想。为研究一个特殊问题,我们先研究一般的情形。我们采用的数学归纳法,就主要体现一般化思想,先证命题对一般值成立,然后再证对每一个特殊的n值也成立。

     

    相关学案

    高中数学人教版新课标A选修2-22.3数学归纳法学案: 这是一份高中数学人教版新课标A选修2-22.3数学归纳法学案,共4页。学案主要包含了课前准备,新课导学,总结提升等内容,欢迎下载使用。

    人教版新课标A选修2-22.3数学归纳法学案设计: 这是一份人教版新课标A选修2-22.3数学归纳法学案设计,共6页。学案主要包含了知识回顾,例题分析等内容,欢迎下载使用。

    人教版新课标A选修2-22.3数学归纳法学案: 这是一份人教版新课标A选修2-22.3数学归纳法学案,共4页。学案主要包含了课前准备,新课导学,总结提升等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map