高中人教版新课标A2.3数学归纳法学案
展开一、预习目标:
理解数学归纳法原理及其本质,掌握它的基本步骤与方法.能较好地理解“归纳奠基”和“归纳递推”两者缺一不可。
二、预习内容:
提出问题:
问题1:前面学习归纳推理时,我们有一个问题没有彻底解决.即对于数列,已知 ,( n=1,2,3…),通过对n=1,2,3,4前4项的归纳,猜想出其通项公式,但却没有进一步的检验和证明.
问题2:大家玩过多米诺骨牌游戏吗?这个游戏有怎样的规划?(多媒体演示多米诺骨牌游戏)
这是一个码放骨牌游戏,码放时保证任意两相邻的两块骨牌,若前一块骨牌倒下,则一定导致后一块骨牌倒下.只要推倒第一块骨牌,就必然导致第二块骨牌倒下;而第二块骨牌倒下,就必然导致第三块骨牌倒下…最后,不论有多少块骨牌都能全部倒下.
讨论问题:
问题1、问题2有什么共同的特征?其结论成立的条件的共同特征是什么
结论成立的条件:结论对第一个值成立;结论对前一个值成立,则对紧接着的下一个值也成立.
上面两个条件分别起怎样的作用?它们之间有怎样的关系?我们能否去掉其中的一个?你能举反例说明吗?
在上述两个条件中,第一个条件是归纳递推的前提和基础,没有它,后面的递推将无从谈起;第二个步骤是核心和关键,是实现无限问题向有限问题转化的桥梁与纽带.
如在前面的问题1中,如果不是1,而是2,那么就不可能得出,因此第一步看似简单,但却是不可缺少的.而第二步显然更加不可缺少.这一点在多米诺骨牌游戏中也可清楚地看出.
解决问题:
由上,证明一个与自然数n有关的命题,可按下列步骤进行:
(1)证明当n取第一个值()时命题成立;
(2)假设n=k(k≥,)时命题成立,证明当n=k+1时命题也成立.
由以上两个步骤,可以断定命题对从开始的所有正整数n都成立.
这种证明方法叫做数学归纳法,它是证明与正整数n(n取无限多个值)有关、具有内在递推关系的数学命题的重要工具.
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
课内探究学案
学习目标
(1)了解由有限多个特殊事例得出的一般结论不一定正确。
(2)初步理解数学归纳法原理。
(3)理解和记住用数学归纳法证明数学命题的两个步骤。
(4)初步会用数学归纳法证明一些简单的与正整数有关的恒等式。
二、学习过程:
例1、证明等差数列通项公式:
解析:(1)让学生理解数学归纳法的严密性和合理性;(2)掌握从到时等式左边的变化情况。
证明:(1) 当n=1时等式成立;
(2) 假设当n=k时等式成立, 即, 则=, 即n=k+1时等式也成立
由 (1)、(2)可知, 等差数列的通项公式对任何n∈都成立.
点评:利用数学归纳法证明和正整数相关的命题时,要注意以下三句话:
递推基础不可少,归纳假设要用到,结论写明莫忘掉。
变式训练1 .在数列{}中, =1, (n∈), 先计算,,的值,再推测通项的公式, 最后证明你的结论.
例2、 用数学归纳法证明
().
解析:(1)进一步让学生理解数学归纳法的严密性和合理性,从而从感性认识
上升为理性认识;
(2)掌握从到时等式左边的变化情况,合理的进行添项、拆项
合并项等。
证明:(1)时:左边,右边,左边=右边,等式成立。
∴当时等式也成立。
由 (1)、(2)可知,对一切 ,原等式均成立
点评:利用数学归纳法证明和正整数相关的命题时,要注意以下三句话:
递推基础不可少,归纳假设要用到,结论写明莫忘掉。
变式训练2:用数学归纳法证明:1+3+5+…+(2n-1)=.
反思总结:
1.归纳法是一种由特殊到一般的推理方法,分完全归纳法和不完全归纳法两种,而不完全归纳法得出的结论不具有可靠性,必须用数学归纳法进行严格证明;
2.数学归纳法作为一种证明方法,用于证明一些与正整数有关数学命题,它的基本
思想是递推思想,它的证明过程必须是两步,最后还有结论,缺一不可;
3.递推归纳时从到,必须用到归纳假设,并进行适当的恒等变换。注意明等式时第一步中时左右两边的形式,第二步中时应增加的式子;第二步中证明命题成立是全局的主体,主要注意两个“凑”:一是“凑”时的形式(这样才好利用归纳假设),二是“凑”目标式。
当堂检测:
1.观察式子:,,,,则可归纳出式子为( )
A.
B.
C.
D.
答案:C
2.用数学归纳法证明:首项是,公比是q的等比数列的通项公式是
,前n项和公式是
课后练习与提高
一、选择题
1.用数学归纳法证明过程中,由n=k递推到n=k+1时,不等式左边增加的项为 ( )
A. B. C. D.
2.凸n边形有f(n)条对角线,凸n+1边形对角线的条数f(n+1)为 ( )
A. f(n)+n+1 B. f(n)+n C. f(n)+n-1 D. f(n)+n-2
3.用数学归纳法证明不等式 的过程中,由n=k递推到n=k+1时,不等式左边 ( )
A.增加了一项
B.增加了一项
C.增加了“”,又减少了“”
D.增加了“ ”,又减少了“”
二、填空题
4.已知数列,计算得,由此可猜测_______.
5.若f(k)=则= + _______.
三、解答题
6.由下列不等式:,,,,,你能得到一个怎样的一般不等式?并加以证明.
参考答案:1. C 2. C 3. C 4. 5.
6.解:根据给出的几个不等式可以猜想第个不等式,即一般不等式为:
.
用数学归纳法证明如下:
(1)当时,,猜想成立;
(2)假设当时,猜想成立,即,
则当时,
,即当时,猜想也正确,所以对任意的,不等式成立.
疑惑点
疑惑内容
高中人教版新课标A2.1合情推理与演绎推理学案: 这是一份高中人教版新课标A2.1合情推理与演绎推理学案,共6页。学案主要包含了 合情推理,提出疑惑,学习过程,教学方法,课时安排,教学过程,板书设计,教学反思等内容,欢迎下载使用。
高中数学人教版新课标A选修2-22.3数学归纳法学案: 这是一份高中数学人教版新课标A选修2-22.3数学归纳法学案,共4页。学案主要包含了课前准备,新课导学,总结提升等内容,欢迎下载使用。
高中数学人教版新课标A选修2-22.3数学归纳法学案: 这是一份高中数学人教版新课标A选修2-22.3数学归纳法学案,共3页。学案主要包含了课后反思等内容,欢迎下载使用。