年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    高中数学1.1.3《正弦定理和余弦定理》教案 新人教A版必修5

    高中数学1.1.3《正弦定理和余弦定理》教案 新人教A版必修5第1页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教版新课标A必修51.1 正弦定理和余弦定理教学设计

    展开

    这是一份高中数学人教版新课标A必修51.1 正弦定理和余弦定理教学设计,
    课题:1.1.3 正弦定理和余弦定理 高二数学 教·学案主备人:执教者:【学习目标】 1.掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。 2.通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。【学习重点】在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。【学习难点】正、余弦定理与三角形的有关性质的综合运用【授课类型】新授课【教 具】课件、电子白板【学习方法】 【学习过程】引入: 思考:在ABC中,已知,,,解三角形。 (由学生阅读课本第9页解答过程) 从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形。下面进一步来研究这种情形下解三角形的问题。二、特例示范: 例1.在ABC中,已知,讨论三角形解的情况分析:先由可进一步求出B;则从而1.当A为钝角或直角时,必须才能有且只有一解;否则无解。2.当A为锐角时,如果≥,那么只有一解;如果,那么可以分下面三种情况来讨论:(1)若,则有两解;(2)若,则只有一解;(3)若,则无解。(以上解答过程详见课本第910页)评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A为锐角且时,有两解;其它情况时则只有一解或无解。例2.在ABC中,已知,,,判断ABC的类型。分析:由余弦定理可知(注意:)解:,即,∴。例3.在ABC中,,,面积为,求的值分析:可利用三角形面积定理以及正弦定理解:由得,则=3,即,从而 当堂练习:(1)在ABC中,已知,,,试判断此三角形的解的情况。(2)在ABC中,若,,,则符合题意的b的值有_____个。(3)在ABC中,,,,如果利用正弦定理解三角形有两解,求x的取值范围。(答案:(1)有两解;(2)0;(3))(1)在ABC中,已知,判断ABC的类型。 (2)已知ABC满足条件,判断ABC的类型。 (答案:(1);(2)ABC是等腰或直角三角形)(1)在ABC中,若,,且此三角形的面积,求角C(2)在ABC中,其三边分别为a、b、c,且三角形的面积,求角C(答案:(1)或;(2))本节小结:(1)在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;(2)三角形各种类型的判定方法; (3)三角形面积定理的应用六、作业布置:学案1.1.3个性设计

    相关教案

    高中数学人教版新课标A必修51.1 正弦定理和余弦定理教案及反思:

    这是一份高中数学人教版新课标A必修51.1 正弦定理和余弦定理教案及反思,

    人教版新课标A必修5第一章 解三角形1.1 正弦定理和余弦定理教案设计:

    这是一份人教版新课标A必修5第一章 解三角形1.1 正弦定理和余弦定理教案设计,

    高中数学人教版新课标A必修51.1 正弦定理和余弦定理教学设计:

    这是一份高中数学人教版新课标A必修51.1 正弦定理和余弦定理教学设计,

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map