高中数学人教版新课标A选修1-22.1合情推理与演绎推理复习练习题
展开
这是一份高中数学人教版新课标A选修1-22.1合情推理与演绎推理复习练习题,共6页。试卷主要包含了考察下列一组不等式, 已知 ,猜想的表达式为,函数由下表定义,将正奇数按下表排成5列, 8等内容,欢迎下载使用。
推理与证明 过关检测试题1.考察下列一组不等式: .将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式可以是 .2.已知数列满足,(),则的值为 , 的值为 . 3. 已知 ,猜想的表达式为( )A.; B.; C.; D..4. 某纺织厂的一个车间有技术工人名(),编号分别为1、2、3、……、,有台()织布机,编号分别为1、2、3、……、,定义记号:若第名工人操作了第号织布机,规定,否则,则等式的实际意义是( )A、第4名工人操作了3台织布机; B、第4名工人操作了台织布机;C、第3名工人操作了4台织布机; D、第3名工人操作了台织布机.5. 已知,计算得,,,,,由此推测:当时,有 6. 观察下图中各正方形图案,每条边上有个圆圈,每个图案中圆圈的总数是,按此规律推出:当时,与的关系式 观察下式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,则可得出一般结论: .8.函数由下表定义: 若,,,则 .9.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝, 第二件首饰是由6颗珠宝构成如图1所示的正六边形, 第三件首饰是由15颗珠宝构成如图2所示的正六边形, 第四件首饰是由28颗珠宝构成如图3所示的正六边形, 第五件首饰是由45颗珠宝构成如图4所示的正六边形, 以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六边形,依此推断第6件首饰上应有_______颗珠宝;则前件首饰所用珠宝总数为_ 颗.(结果用表示) 10.将正奇数按下表排成5列 第1列第2列第3列第4列第5列第1行 1357第2行1513119 第3行 17192123…… ……2725 那么2003应该在第 行,第 列。11.如右上图,一个小朋友按如图所示的规则练习数数,1大拇指,2食指,3中指,4无名指,5小指,6无名指,,一直数到2008时,对应的指头是 (填指头的名称). 12.在数列1,2,2,3,3,3,4,4,4,4,……中,第25项为_____.13.观察下列的图形中小正方形的个数,则第n个图中有 个小正方形. 14.同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第n个图案中需用黑色瓷砖___________块.(用含n的代数式表示) 15.如图所示,面积为的平面凸四边形的第条边的边长记为,此四边形内任一点到第条边的距离记为,若,则.类比以上性质,体积为的三棱锥的第个面的面积记为, 此三棱锥内任一点到第个面的距离记为,若, 则 ( B ) A. B. C. D. 16.设O是内一点,三边上的高分别为,O到三边的距离依次为,则__ _______,类比到空间,O是四面体ABCD内一点,四顶点到对面的距离分别为,O到这四个面的距离依次为,则有_ __ 17.在中,两直角边分别为、,设为斜边上的高,则,由此类比:三棱锥中的三条侧棱、、两两垂直,且长度分别为、、,设棱锥底面上的高为,则 .18、若数列是等差数列,对于,则数列也是等差数列。类比上述性质,若数列是各项都为正数的等比数列,对于,则= 时,数列也是等比数列。19.已知△ABC三边a,b,c的长都是整数,且,如果b=m(mN*),则这样的三角形共有 个(用m表示). 20.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第n行(n≥2)中第2个数是________(用n表示).21.在△ABC中,,判断△ABC的形状并证明. 22.已知a、b、c是互不相等的非零实数.若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.应假设 23.中,已知,且,求证:为等边三角形。 24.如图,、、…、 是曲线:上的个点,点()在轴的正半轴上,且是正三角形(是坐标原点).(1)写出、、;(2)求出点()的横坐标关于的表达式并证明.
推理与证明 测试题答案1. 3. 3. B. 4. A 5. 6. 7. 8.49. 10.251,3 11、食指 12.在数列1,2,2,3,3,3,4,4,4,4,……中,第25项为__7____.13. 14. 15、B提示:平面面积法类比到空间体积法16. 1. 提示:平面面积法类比到空间体积法17..18、提示:等差数列类比到等比数列,算术平均数类比到几何平均数19. 20.21.解: 所以三角形ABC是直角三角形22. 三个方程中都没有两个相异实根 证明:假设三个方程中都没有两个相异实根,则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,(a-b)2+(b-c)2+(c-a)2≤0. ①由题意a、b、c互不相等,∴①式不能成立.∴假设不成立,即三个方程中至少有一个方程有两个相异实根.方法总结:反证法步骤—假设结论不成立→推出矛盾→假设不成立.凡是“至少”、“唯一”或含有否定词的命题适宜用反证法.23.解: 分析:由 由 所以为等边三角形24.如图,、、…、 是曲线:上的个点,点()在轴的正半轴上,且是正三角形(是坐标原点).(1)写出、、;(2)求出点()的横坐标关于的表达式并证明.解:(Ⅰ)……………….6分(2)依题意,得,由此及得,即. 由(Ⅰ)可猜想:. 下面用数学归纳法予以证明: (1)当时,命题显然成立; (2)假定当时命题成立,即有,则当时,由归纳假设及得,即,解之得(不合题意,舍去),即当时,命题成立. 由(1)、(2)知:命题成立.……………….10分
相关试卷
这是一份高中数学人教版新课标A选修1-22.1合情推理与演绎推理课后作业题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2020-2021学年2.1合情推理与演绎推理当堂达标检测题,共9页。试卷主要包含了如果数列是等差数列,则,下面使用类比推理正确的是,设,,n∈N,则,函数的图像与直线相切,则=,下面的四个不等式,设 , 则等内容,欢迎下载使用。
这是一份人教版新课标A选修1-22.1合情推理与演绎推理课后练习题,共5页。试卷主要包含了设则,函数内,函数在点处的导数是,设的最小值是,若,则,计算等内容,欢迎下载使用。