高中数学人教版新课标A选修2-11.1命题及其关系学案设计
展开学校: 临清一中 学科:数学 编写人:汪春梅
1.4.2含有一个量词的命题的否定
课前预习学案
一、预习目标
(1) 归纳总结出含有一个量词的命题的含义与它们的否定在形式上的变化规律。
(2)根据全称量词和存在量词的含义,用简洁、自然的语言表叙含有一个量词的命题的否定
二、预习内容
1、明确命题的构成
我们现在所涉及的命题一般由四部分组成:一是被判断对象;二是被判断对象的结果(或性质);三是修饰被判断对象的量词,分为两类:一类是————,一般常用“一切”、“所有”、“每一个”、“任意一个”等词语表达,另一类是————,一般常用“有些”、“存在”、“至少有一个”等词语表达;四是“判断词”,是联系被判断对象与结果(或性质)的肯定词或否定词,肯定词常用“是”、“有”等表示,否定词常用“不是”、“没有”等表示.如命题“至少有一个质数不是奇数”中,“质数”为被判断对象,“奇数”为结果(或性质),“至少有一个”为量词,“不是”为否定词.
2﹑掌握常见的关键词(量词与判断词)的否定形式
正面词语 | 等于 | 大于 | 小于 | 是 | 都是 | 能 |
否定词语 |
|
|
|
|
|
|
正面词语 | 任意的 | 所有的 | 至多一个 | 至少一个 | 至多有n个 | 至少有n个 |
否定词语 |
|
|
|
|
|
|
说明:写命题p的否定形式,不能一概在关键词前加“不”,而要搞清一个命题研究的对象是个体还是全体,如果研究的对象是个体,只须将“是”改成“不是”,将“不是”改成“是”等即可.如果命题研究的对象不是一个个体,就不能简单地将“是”改在“不是”, 将“不是”改成“是”等,而是要分清命题是全称命题,还是特称命题.
注:全称命题“”的否定为特称命题“”
特称命题“”的否定为全称命题“”
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 | 疑惑内容 |
|
|
|
|
|
|
课内探究学案
一、学习目标
1.通过生活和数学中的实例,理解对含有一个量词的命题的否定的意义;
2.能正确地对含有一个量词的命题进行否定;
3.进一步提高利用全称量词与存在量词准确、简洁地叙述数学内容的能力;
4.培养对立统一的辩证思想
二、学习过程
探究一:1、全称命题的否定
1.(2007年山东高考文理科)命题“对任意的x∈R,x3-x2+1≤0”的否定是( )
A.不存在x∈R,x3-x2+1≤0 B.存在x∈R,x3-x2+1≤0
C.存在x∈R,x3-x2+1>0 D.对任意的x∈R,x3-x2+1>0
探究二:特称命题的否定
3.(2007年海南省调研文理科)已知特称命题p:x∈R,2x+1≤0,则命题P的否定是 ( )
A.x∈R,2x+1>0 B.x∈R,2x+1>0
C.x∈R,2x+1≥0 D.x∈R,2x+1≥0
(三)反思总结
1、书写命题的否定时一定要抓住决定命题性质的量词,从对量词的否定入手,书写命题的否定
2.书写命题的否定时,一定要注重理解数学符号的意义
3.由于全称量词的否定是存在量词,而存在量词的否定又是全称量词;因此,全称命题的否定一定是特称命题;特称命题的否定一定是全称命题.[来源:学§科§网Z§X§X§K]
(四)当堂检测
写出下列全称命题与特称的否定
⑴p:所有能被3整除的整数都是奇数;
⑵p:每一个四边形的四个顶点共圆;
⑶p:对任意 , 的个位数字不等于3。
(4)p:有的三角形是等边三角形;
(5)p:有一个素数含有三个正因子
(五)课后练习与提高
1.命题p:“有一个二次函数的图象与y轴不相交”的否定是( )
A.有一个二次函数的图象与y轴相交 B.任意一个二次函数的图象与y轴相交
C.任意一个二次函数的图象与y轴不相交 D.存在一个二次函数的图象与y轴
2.命题“原函数与反函数的图象关于直线y=x对称”的否定是( )
A.原函数与反函数的图象关于直线y=-x对称
B.原函数不与反函数的图象关于直线y=x对称
C.存在一个原函数与反函数的图象不关于直线y=x对称
D.存在原函数与反函数的图象关于直线y=x对称
学校: 临清一中 学科:数学 编写人:汪春梅 审稿人:张林
1.4.2含有一个量词的命题的否定教案[来源:Z。xx。k.Com]
一、教材分析
《简易逻辑》列入高中学习内容以后,不少学生对逻辑联结词非p,即命题p的否定的理解存在一些误区.而对含有一个量词的命题的否定又是全称量词与存在量词的重点内容,也是新课标高考的一个亮点.下面就含有一个量词的命题的否定进行精析.
二、教学目标
1.通过生活和数学中的实例,理解对含有一个量词的命题的否定的意义;
2.能正确地对含有一个量词的命题进行否定;
3.进一步提高利用全称量词与存在量词准确、简洁地叙述数学内容的能力;
4.培养对立统一的辩证思想
三、教学重点难点
教学重点:
通过探究,了解含有一个量词的命题与它们的否定在形式上的变化规律,会正确地对含有一个量词的命题进行否定。
教学难点:
正确地对含有一个量词的命题进行否定。
四、学情分析
学生已学过初中和高中必修①~⑤的全部内容,已拥有了基本的模块知识和数学框架,对用数学符号表示数学命题并不陌生,课本中许多数学也来自生活,对纯数学命题和生活中数学命题有一定的经验,这些都是学生进一步学习的基础,一些常见的数学思想如转化,形式化思想在各个模块中也有所渗透,这些都为学习全称量词与特称量词提供了有利的保障和支撑.
概念的形成过程应该是一个归纳、概括的过程,是一个由特殊到一般,由具体到抽象的过程.教师应该充分认识到,学生知识结构的改变不仅是要教师讲、教师引导,还需要学生的亲身体验,亲自参与,与同伴交流.
学生在学习数学符号的过程中会存在一定的困难,这些困难的客观因素在于数学符号的高度抽象性、概括性和复杂行,要把具体的数学命题、生活中的数学命题的共性特征抽象出来,用数学的符号语言统一的概括描述它们的共性特征,对学生比较困难.主观因素在于三个方面:①思维定势的影响,全称命题“”中,变量和含有变量的命题受函数概念的影响而不能正确理解全称命题;②理解数学符号表述含义的困难,这些困难不仅是对量词概念的理解,还包括命题中所含的其他数学符号的含义。教师引导学生辨析很有必要.教师引导学生获得对问题本质的认识是一个具有挑战性的教学活动.所以企图在一节课中就实现学生联系各个模块知识灵活运用是不现实的.只有在今后的学习中,不断领悟、反思、运用活动逐步深刻理解并运用它们. 教学中,教师要采取适当的方法,注意启发引导,不要以自己的想法代替学生的想法,把全称命题特称命题的定义告诉学生.注意引导学生积极参与概念形成的关节点处的讨论、交流等活动,引导学生总结判断全称命题与特称命题的思想方法.不要简化概念发生过程的教学,而把中心放在练习强化上.要防止练习中知识的面太大而产生负迁移而影响理解概念的本质.
五、教学方法
探究法,学案导学
六、课前准备
(1)学生的学习准备;预习课本。
(2)教师的教学准备;教学设计,课件制作,学生的学习行为分析等;
(3)教学环境的设计与布置;多媒体教室;
(4)教学用具的设计和准备: 投影仪,黑板,及其相关教学软件.
七、课时安排:1课时
八、教学过程
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
(二)情景导入、展示目标。
(ⅰ).课题引入(采用多媒体)
一、明确命题的构成
我们现在所涉及的命题一般由四部分组成:一是被判断对象;二是被判断对象的结果(或性质);三是修饰被判断对象的量词,分为两类:一类是全称量词,一般常用“一切”、“所有”、“每一个”、“任意一个”等词语表达,另一类是特称量词,一般常用“有些”、“存在”、“至少有一个”等词语表达;四是“判断词”,是联系被判断对象与结果(或性质)的肯定词或否定词,肯定词常用“是”、“有”等表示,否定词常用“不是”、“没有”等表示.如命题“至少有一个质数不是奇数”中,“质数”为被判断对象,“奇数”为结果(或性质),“至少有一个”为量词,“不是”为否定词.
二﹑掌握常见的关键词(量词与判断词)的否定形式
正面词语 | 等于 | 大于 | 小于 | 是 | 都是 | 能 |
否定词语 | 不等于 | 不大于 | 不小于 | 不是 | 不都是 | 不能 |
正面词语 | 任意的 | 所有的 | 至多一个 | 至少一个 | 至多有n个[来源:学_科_网] | 至少有n个 |
否定词语 | 某个 | 某些 | 至少有两个 | 一个也没有 | 至少有n+1个 | 至多有n+1个 |
说明:写命题p的否定形式,不能一概在关键词前加“不”,而要搞清一个命题研究的对象是个体还是全体,如果研究的对象是个体,只须将“是”改成“不是”,将“不是”改成“是”等即可.如果命题研究的对象不是一个个体,就不能简单地将“是”改在“不是”, 将“不是”改成“是”等,而是要分清命题是全称命题,还是特称命题.
注:全称命题“”的否定为特称命题“”
特称命题“”的否定为全称命题“
(三)合作探究、精讲点拨。
掌握两种基本题型
对全称命题和特称命题的否定,一般要对“量词”和“判断词”同时进行否定,全称与特称互为否定,肯定与否定互为否定.下面就全称命题与特称命题的否定以例作分析
探究一:1、全称命题的否定
例1(2007年山东高考文理科)命题“对任意的x∈R,x3-x2+1≤0”的否定是( )
A.不存在x∈R,x3-x2+1≤0 B.存在x∈R,x3-x2+1≤0[来源:高考学习网C.存在x∈R,x3-x2+1>0 D.对任意的x∈R,x3-x2+1>0
分析:本题是一道对全称命题的否定,因此否定时既要对全称量词“任意”否定,又为对判断词“≤”进行否定,全称量词“任意”的否定为存在量词“存在”等,判断词“≤”的否定为“>”,所以命题“对任意的x∈R,x3-x2+1≤0”的否定是“存在x∈R,x3-x2+1>0”,故选C.
点拨:从本题的解答可以看出,对全称命题的否定,在否定判断词时,还要否定全称量词,变为特称命题.特别要注意的是,由于有的命题的全称量词往往可以省略不写,从而在作命题否定时易将全称命题只否定判断词,而不否定省略了的全称量词,如将命题p“实数的绝对值是正数”否定p 写成“实数的绝对值不是正数”这就错了.很显然,这里的“p”与“p ”都是假命题,与命题“p”和命题“p”之间的真值关系相矛盾.究其原因,命题p为全称命题,省略了量词“所有”,正确的否定形式是“存在一个实数的绝对值不是正数”.事实上由于实数是一个全称概念,命题p应为“实数的绝对值(都)是正数”故其否定形式亦可写成“实数的绝对值不都是正数”.
探究二:.特称命题的否定
例3(2007年海南省调研文理科)已知特称命题p:x∈R,2x+1≤0,则命题P的否定是 ( )
A.x∈R,2x+1>0 B.x∈R,2x+1>0
C.x∈R,2x+1≥0 D.x∈R,2x+1≥0
分析:本题是一道对特称命题的否定,因此否定时既要对存在量词“”否定,又为对判断词“≤”进行否定,存在量词“”的否定为全称量词“”等,判断词“≤”的否定为“>”,所以命题“对任意的x∈R,x3-x2+1≤0”的否定是“x∈R,2x+1>0”,故选B.
点拨:从本题的解答可以看出,对特称命题的否定,在否定判断词时,也要否定存在量词.如分析特称命题“有的三角形是直角三角形”的否定,是把判断词“是”,否定为“不是”,再把存在量词“有的”,否定为“所有的”,即为“所有的三角形是直角三角形”.
(四)反思总结,当堂检测。
写出下列全称命题与特称的否定
⑴p:所有能被3整除的整数都是奇数;
⑵p:每一个四边形的四个顶点共圆;
⑶p:对任意 , 的个位数字不等于3。
(4)p:有的三角形是等边三角形;
(5)p:有一个素数含有三个正因子
九:板书设计:
一、明确命题的构成
二﹑掌握常见的关键词(量词与判断词)的否定形式
三﹑掌握两种基本题型
十、教学反思
1.引导学生进行归纳总结,反思本节的知识要点:全称命题的否定为特称命题,特称命题的否定为全称命题。
2.帮助学生将所学新知尽快融入知识系统,帮助主动进行知识建构。,
高中数学人教B版 (2019)必修 第一册1.2.1 命题与量词导学案: 这是一份高中数学人教B版 (2019)必修 第一册1.2.1 命题与量词导学案,共10页。
数学必修41.4 三角函数的图象与性质导学案及答案: 这是一份数学必修41.4 三角函数的图象与性质导学案及答案,共11页。学案主要包含了教材分析,教学目标,教学重点难点,学情分析,教学方法,课前准备,课时安排,教学过程等内容,欢迎下载使用。
人教版新课标A选修2-11.1命题及其关系导学案及答案: 这是一份人教版新课标A选修2-11.1命题及其关系导学案及答案,共4页。学案主要包含了课标要求,学习目标,自主学习,典型例题,拓展提高,自主练习等内容,欢迎下载使用。