![《基本不等式》教案2第1页](http://img-preview.51jiaoxi.com/3/3/12505683/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学必修53.4 基本不等式教学设计及反思
展开
这是一份数学必修53.4 基本不等式教学设计及反思,共2页。教案主要包含了教学目标,教学重点,教学过程等内容,欢迎下载使用。
3.4 基本不等式第一课时 基本不等式(一)一、教学目标(1)知识与技能:理解两个实数的平方和不小于它们之积的2倍的不等式的证明;理解两个正数的算术平均数不小于它们的几何平均数的证明以及它的几何解释(2)过程与方法 :本节学习是学生对不等式认知的一次飞跃。要善于引导学生从数和形两方面深入地探究不等式的证明,从而进一步突破难点。变式练习的设计可加深学生对定理的理解,并为以后实际问题的研究奠定基础。两个定理的证明要注重严密性,老师要帮助学生分析每一步的理论依据,培养学生良好的数学品质(3)情感与价值:培养学生举一反三的逻辑推理能力,并通过不等式的几何解释,丰富学生数形结合的想象力二、教学重点、难点教学重点:两个不等式的证明和区别教学难点:理解“当且仅当a=b时取等号”的数学内涵三、教学过程提问1:我们把“风车”造型抽象成图3.4-2.在正方形ABCD中有4个全等的直角三角形.设直角三角形的长为、,那么正方形的边长为多少?面积为多少呢?(,)提问2:那4个直角三角形的面积和是多少呢? ( )提问3:根据观察4个直角三角形的面积和正方形的面积,我们可得容易得到一个不等式,。什么时候这两部分面积相等呢?(当直角三角形变成等腰直角三角形,即时,正方形EFGH变成一个点,这时有)1、一般地,对于任意实数 、,我们有,当且仅当时,等号成立。提问4:你能给出它的证明吗?证明: 所以 注意强调 (1) 当且仅当时, (2)特别地,如果 用和代替、,可得,也可写成,引导学生利用不等式的性质推导提问5:观察图形3.4-3,你能得到不等式的几何解释吗? 练习、已知:求证: 例3、若,,, 比较的大小例4、当时,求函数的值域。例5、若实数满足求的最小值练习:教材P100面练习1题、2题。四:课堂小结:比较两个重要不等式的联系和区别 五:作业:《习案》作业三十一。
相关教案
这是一份高中数学第一章 预备知识3 不等式3.2 基本不等式教案设计,共7页。教案主要包含了知识与技能,过程与方法,情感、态度与价值观,教学重点,教学难点,设计意图等内容,欢迎下载使用。
这是一份高中数学北师大版 (2019)必修 第一册3.2 基本不等式第2课时教案设计,共7页。教案主要包含了复习引入,新知探究,初步应用,归纳反思,目标检测设计等内容,欢迎下载使用。
这是一份北师大版 (2019)必修 第一册第一章 预备知识3 不等式3.2 基本不等式教案,共5页。教案主要包含了新课导入,新知探究,应用举例,课堂练习,课堂小结,布置作业等内容,欢迎下载使用。