高中数学人教版新课标A必修5第二章 数列综合与测试教案及反思
展开第十一课时
课 题
§3.6.1 分期付款中的有关计算
教学目标
1.通过分期付款中的有关计算巩固等比数列的通项公式和前n项和公式的掌握;
2.培养数学的应用意识.
教学重点
等差数列通项公式和前n项和公式的应用
教学难点
利用等比数列有关知识解决实际问题.
教学方法
启发诱导
教学过程
(I)复习回顾
师:近几天来,我们又学习了有关等比数列的下列知识:
生:通项公式:
前n项和公式:
(Ⅱ)讲授新课
师:这节课我们共同来探究一下它在实际生活中的应用,如今,在社会主义市场经济的调节之下,促销方式越来越灵活,一些商店为了促进商品的销售,便于顾客购买一些售价较高的商品,在付款方式上也很灵活,可以一次性付款,也可以分期付款
首先我们来了解一下何为分期付款?也就是说,购买商品可以不一次性将款付清,而
可以分期将款逐步还清,具体分期付款时,有如下规定:
1.分期付款中规定每期所付款额相同。
2.每月利息按复利计算,是指上月利息要计入下月本金.例如:若月利率为0.8%,款
额a元,过1个月增值为a(1+0.8%)=1.008a(元),再过1个月则又要增值为1.008a(1+O.O08)=1.0082a(元)
3.各期所付的款额连同到最后一次付款时所生的利息之和,等于商品售价及从购买到最后一次付款时的利息之和
师:另外,多长时间将款付清,分几次还清,也很灵活,它有多种方案可供选择,下面我们以一种方案为例来了解一下这一种付款方式.
例如,顾客购买一件售价为5000元的商品时,如果采取分期付款,总共分六次,在一年内将款全部付清,第月应付款多少元?
首先,我们来看一看,在商品购买后1年货款全部付清时,其商品售价增值到了多少.
生:由于月利率为O.008,在购买商品后1个月时,该商品售价增值为:
5000(1+O.008)=5000x1.O08(元),
出于利息按复利计算,在商品购买后2个月,商品售价增值为:
5000x1.O08x(1+0.008)=5000x1.0082(元),
……
在商品购买12个月(即货款全部付清时),其售价增值为:
5000x1.00811x(1+O.008)=5000x1.00812(元)
师:我们再来看一看,在货款全部付清时,各期所付款额的增值情况如何.
假定每期付款x元.
第1期付款(即购买商品后2个月)x元时,过10个月即到款全部付清之时,则付款连同利息之和为:1.00810(元),
第2期付款(即购买商品后4个月)x元后,过8个月即到款全部付清之时,所付款连同利息之和为:1.O088 x(元)
师:依此类推,可得第3,4,5,6,期所付的款额到货款全部付清时连同利息的和.
生:可推得第3,4,5,6期所付的款额到货款全部付清时,连同利息的和依次为:
1.O086(元),1.0084(元),1.0082x(元),x(元)
师:如何根据上述结果来求每期所付的款额呢?
根据规定3,可得如下关系式:
x+1.0082x+1.O084x+…1.O0810x=5000×1.O0812
即:x(1+1.0082+1.0084+…+1.00810)=5000×1.O0812
生:观其特点,可发现上述等式是一个关于x的一次方程,且等号左边括弧是一个首
项为1,公比为1.0082的等比数列的前6项的和.由此可得
解之得x≈880.8(元)
即每次所付款额为880.8元,因此6次所付款额共为880.8×6=5285(元),它比一次
性付款多付285元.
(Ⅲ)课堂练习
生:选另一种方案作为练习,
方案A:分12次付清,即购买后1个月第一次付款,再过1个月第2次付款…购买后12个月第12次付款.
方案B:分3次付清,即购买后4个月第1次付款,再过4个月第2次付款,再过4个月第3次付清款.
(Ⅳ)课时小结
师:首先,将实际问题转化为数学问题,即数学建模,然后根据所学有关数学知识将问题解决,这是解决实际问题的基本步骤.
(V)课后作业
一、熟练掌握解决分期付款问题的基本方法.
二、1.预习内容:课本P135-P136。
2.预习提纲:采取不同方案实现分期付款中的x的表达式是否有共同特点?可否概括出一个一般公式?
板书设计
课题 | |||
分期付款规定: ①②③ | 例:①建模 | ②解决问题 | 总结 |
教学后记
高中数学人教版新课标A必修52.5 等比数列的前n项和教案设计: 这是一份高中数学人教版新课标A必修52.5 等比数列的前n项和教案设计,共3页。教案主要包含了求数列前n项和等内容,欢迎下载使用。
数学第二章 数列综合与测试教案: 这是一份数学第二章 数列综合与测试教案,共3页。教案主要包含了求极限等内容,欢迎下载使用。
数学第二章 数列2.1 数列的概念与简单表示法教案设计: 这是一份数学第二章 数列2.1 数列的概念与简单表示法教案设计,共2页。教案主要包含了提出课题,关于数列的通项公式,补充例题,小结,作业等内容,欢迎下载使用。