![广东省佛山市顺德区均安中学高二数学必修五学案:第一章《解三角形。的进一步讨论(人教版)01](http://img-preview.51jiaoxi.com/3/3/12508508/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省佛山市顺德区均安中学高二数学必修五学案:第一章《解三角形。的进一步讨论(人教版)02](http://img-preview.51jiaoxi.com/3/3/12508508/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学必修5第三章 不等式综合与测试学案及答案
展开●教学目标
知识与技能:灵活运用正、余弦定理解决两类基本的解三角形问题。
过程与方法:通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。
情感态度与价值观:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系。
●教学重点
在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;
三角形各种类型的判定方法;三角形面积定理的应用。
●教学难点
正、余弦定理与三角形的有关性质的综合运用。
●教学过程
Ⅰ.旧知回顾
三角形中的边、角之间的关系
边a、b、c所对的角分别为A、B、C,在中有如下常用结论:
(1)a+b>c,b+c>a,a+c>b;(2)A+B+C=;(3)a>bA>B;(4)a=bA=B;
(5) A为直角 ;A为锐角 ;A为钝角
(7) ; ; ; .
Ⅱ.讲授新课
考查点一:判断三角形形状
例1.在中,已知(a+b+c)(b+c-a)=3bc,,
试判断的形状。
考查点二:利用定理证明恒等式
例2:在中,a、b、c分别为A、B、C的对边,求证:
(1)
(2)
见第16页例6.
考查点三:利用定理研究函数问题
例3.已知中,a、b、c分别为A、B、C的对边,且
(1)求面积的最大值;(2)求a的最小值。
练习1:如图,某农场有一块边长为2a的等边三角形ABC试验田,D、E两点分别在边AB、AC上,DE把这块试验田分成面积相等的两部分作对比试验地,设AD=x,DE=y,求用x表示y的函数关系式。
考查点四:定理与三角变换
例4.在中a、b、c分别为A、B、C的对边,且,
求A和tanB的值
练习2. 在中a、b、c分别为A、B、C的对边,且。求
(1)的值,(2)的值。
考查点五:解决几何问题
例5.如图是等边三角形, 是等腰直角三角形,,BD交AC于E,AB=2.
(1)求,(2)求AE.
开拓思维:
1.如图,半圆O的直径为6,A为直径延长线上的一点,OA=6,B为半圆上任意一点,以AB为一边作等边三角形,那么B在 什么位置时四边形AOBC的面积最大?
2.如图,在平面上有A、B、P、Q四个点,A、B为定点,,P、Q为动点,且AP=PQ=QB=1,记的面积分别为S,T.
(1)求的取值范围;
(2)当取最大值时,判断的形状。
Ⅳ.课时小结(由学生小结)
Ⅴ.课后作业
同步导学
高中数学人教版新课标A必修53.3 二元一次不等式(组)与简单的线性第一课时学案: 这是一份高中数学人教版新课标A必修53.3 二元一次不等式(组)与简单的线性第一课时学案,共3页。
2020-2021学年3.3 二元一次不等式(组)与简单的线性第三课时导学案: 这是一份2020-2021学年3.3 二元一次不等式(组)与简单的线性第三课时导学案,共2页。
人教版新课标A必修53.3 二元一次不等式(组)与简单的线性第二课时导学案: 这是一份人教版新课标A必修53.3 二元一次不等式(组)与简单的线性第二课时导学案,共2页。