![高二新课程数学《3.3.2简单的线性规划》导学案(新人教A版)必修五第1页](http://img-preview.51jiaoxi.com/3/3/12508520/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高二新课程数学《3.3.2简单的线性规划》导学案(新人教A版)必修五第2页](http://img-preview.51jiaoxi.com/3/3/12508520/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高二新课程数学《3.3.2简单的线性规划》导学案(新人教A版)必修五第3页](http://img-preview.51jiaoxi.com/3/3/12508520/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
高中数学人教版新课标A必修53.3 二元一次不等式(组)与简单的线性导学案及答案
展开
这是一份高中数学人教版新课标A必修53.3 二元一次不等式(组)与简单的线性导学案及答案,共6页。
课题:3.3.2简单的线性规划(1)班级: 组名: 姓名: 设计人:赵帅军 审核人:魏帅举 领导审批: 一.:自主学习,明确目标1.知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图 解法,并能应用它解决一些简单的实际问题;2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力; 教学重点:用图解法解决简单的线性规划问题教学难点:准确求得线性规划问题的最优解教学方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;二.研讨互动,问题生成1、二元一次不等式在平面直角坐标系中表示什么图形?2、怎样画二元一次不等式(组)所表示的平面区域?应注意哪些事项?3、熟记“直线定界、特殊点定域”方法的内涵。三.合作探究,问题解决在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。1、下面我们就来看有关与生产安排的一个问题:引例:某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,该厂所有可能的日生产安排是什么?(1)用不等式组表示问题中的限制条件:设甲、乙两种产品分别生产x、y件,又已知条件可得二元一次不等式组: ……………………………………………………………….(1)(2)画出不等式组所表示的平面区域:如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。(3)提出新问题:进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?(4)尝试解答:设生产甲产品x件,乙产品y件时,工厂获得的利润为z,则z=2x+3y.这样,上述问题就转化为:当x,y满足不等式(1)并且为非负整数时,z的最大值是多少?把z=2x+3y变形为,这是斜率为,在y轴上的截距为的直线。当z变化时,可以得到一族互相平行的直线,如图,由于这些直线的斜率是确定的,因此只要给定一个点,(例如(1,2)),就能确定一条直线(),这说明,截距可以由平面内的一个点的坐标唯一确定。可以看到,直线与不等式组(1)的区域的交点满足不等式组(1),而且当截距最大时,z取得最大值。因此,问题可以转化为当直线与不等式组(1)确定的平面区域有公共点时,在区域内找一个点P,使直线经过点P时截距最大。(5)获得结果:由上图可以看出,当实现金国直线x=4与直线x+2y-8=0的交点M(4,2)时,截距的值最大,最大值为,这时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元。2、线性规划的有关概念:①线性约束条件:在上述问题中,不等式组是一组变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,故又称线性约束条件.②线性目标函数:关于x、y的一次式z=2x+y是欲达到最大值或最小值所涉及的变量x、y的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.④可行解、可行域和最优解:满足线性约束条件的解(x,y)叫可行解.由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.3、 变换条件,加深理解探究:课本第100页的探究活动(1) 在上述问题中,如果生产一件甲产品获利3万元,每生产一件乙产品获利2万元,有应当如何安排生产才能获得最大利润?在换几组数据试试。(2) 有上述过程,你能得出最优解与可行域之间的关系吗? 3.随堂练习1.请同学们结合课本P91练习1来掌握图解法解决简单的线性规划问题.(1)求z=2x+y的最大值,使式中的x、y 满足约束条件
相关学案
这是一份高中数学人教版新课标A必修53.3 二元一次不等式(组)与简单的线性学案设计,共5页。
这是一份人教版新课标A必修53.3 二元一次不等式(组)与简单的线性学案,共5页。
这是一份高中数学人教版新课标A必修52.4 等比数列导学案,共5页。学案主要包含了学习目标,研讨互动 问题生成,合作探究 问题解决,点睛师例 巩固提高,要点归纳 反思总结,多元评价,课后训练等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)