高中数学人教版新课标A必修33.2.2随机数的产生教案
展开教学目标:
1.通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,了解随机数的概念;体会数学知识与现实世界的联系,培养逻辑推理能力.
2.通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯.利用计算机产生随机数,并能直接统计出频数与频率.通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.
教学重点:
学会利用随机数实验来求简单事件的概率.
教学难点:
学会利用计算器、计算机求随机数的方法.
教学方法:
讲授法
课时安排:
1课时
教学过程:
一、导入新课:
复习上一节课的内容:
(1)古典概型.我们将具有①试验中所有可能出现的基本事件只有有限个;(有限性)②每个基本事件出现的可能性相等.(等可能性)这样两个特点的概率模型称为古典概率概型,简称古典概型.
(2)古典概型计算任何事件的概率计算公式:
P(A)=.本节课我们学习(整数值)随机数的产生,教师板书课题.
二、新课讲解:
提出问题
(1)在掷一枚均匀的硬币的试验中,如果没有硬币,你会怎么办?
(2)在掷一枚均匀的骰子的试验中,如果没有骰子,你会怎么办?
(3)随机数的产生有几种方法,请予以说明.
(4)用计算机或计算器(特别是TI图形计算器)如何产生随机数?
活动:学生思考或讨论,并与同学交流活动感受,讨论可能出现的情况,师生共同最后汇总方法、结果和感受.
讨论结果:
(1)我们可以用0表示反面朝上,1表示正面朝上,用计算器做模拟掷硬币试验.
(2)我们可以分别用数字1、2、3、4、5、6表示出现“1点”“2点”“3点”“4点”“5点”和“6点”,用计算器做模拟掷骰子试验.
(3)可以由试验产生随机数,也可用计算机或计算器来产生随机数.
①由试验产生的随机数:例如我们要产生1—10之间的随机数,可以把大小形状均相同的十张纸片的背后分别标上:1,2,3,…,8,9,10,然后任意地抽出其中一张,这张纸上的数就是随机数.这种产生随机数的方法比较直观,不过当随机数的量比较大时,就不方便,因为速度太慢.
②用计算机或计算器(特别是TI图形计算器)产生随机数:利用计算机程序算法产生,具有周期性(周期很长),具有类似随机数性质,称为伪随机数.在随机模拟时利用计算机产生随机数比较方便.
(4)介绍各种随机数的产生.
①计算器产生随机数
下面我们介绍一种如何用计算器产生你指定的两个整数之间的取整数值的随机数.例如,要产生1—25之间的取整数值的随机数,按键过程如下:
以后反复按键,就可以不断产生你需要的随机数.
同样地,我们可以用0表示反面朝上,1表示正面朝上,利用计算器不断地产生0,1两个随机数,以代替掷硬币的试验.按键过程如下:
②利用TI图形计算器产生随机数的方法
只要输入RAND(N)(其中N为任意整数,如图:RAND(20)表示1到20的随机数.)利用TI图形计算器产生随机数的速度很快而且很方便.
③介绍利用计算机产生随机数(主要利用Excel软件)
先让学生熟悉Excel软件特别是产生随机数的函数,画统计图的功能,以及了解Excel软件对统计数据进行处理的功能.
我们也可以用计算机产生随机数,而且可以直接统计出频数和频率.下面以掷硬币为例给出计算机产生随机数的方法.
每个具有统计功能的软件都有随机函数.以Excel软件为例,打开Excel软件,执行下面的步骤:(见教材131页)
同时可以画频率折线图,它更直观地告诉我们:频率在概率附近波动.
上面我们用计算机或计算器模拟了掷硬币的试验,我们称用计算机或计算器模拟试验的方法为随机模拟方法或蒙特卡罗(Mnte Carl)方法.
三、例题讲解:(注:例1,变式训练选讲)
例1 利用计算器产生10个1—100之间的取整数值的随机数.
解:具体操作如下:
键入
反复操作10次即可得之.
点评:利用计算器产生随机数,可以做随机模拟试验,在日常生活中有着广泛的应用.
变式训练
利用计算器生产10个1到20之间的取整数值的随机数.
解:具体操作如下:
键入
反复按键10次即可得到.
例2: 天气预报说,在今后的三天中,每一天下雨的概率均为40%,这三天中恰有两天下雨的概率是多少?
活动:这里试验出现的可能结果是有限个,但是每个结果的出现不是等可能的,所以不能用古典概型求概率的公式.用计算器或计算机做模拟试验可以模拟下雨出现的概率是40%.
解:(略)
本例题的目的是要让学生体会如何利用模拟的方法估算概率.
解决步骤:(1)建立概率模型:模拟每一天下雨的概率为40%,有很多方法,例如用计算机产生0—9的随机数,可用0,1,2,3表示下雨,其余表示不下雨(当然,也可以用5,6,7,9表示下雨,其余表示不下雨),这样可以体现下雨的概率为40%.
(2)进行模拟实验,可以用Excel软件模拟的结果(模拟20个):可用函数“RANDBETWEEN(1,20)”.
(3)验证统计结果(略).
注意:用随机数模拟的方法得到的仅仅是20次的模拟结果,是概率的近似值,而不是概率.随着模拟的数量不断地增加(相当于增加样本的容量),模拟的结果就越接近概率.
关于例2的实际操作,有条件的可以让学生自己上机动手或利用计数器来演算.
点评:掌握产生随机数的方法,特别是用计算机模拟的方法,还要建立适当的模型.
四、课堂练习:
教材133页练习:1、2、3、4
五、课堂小结
随机数具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复试验,比如现在很多城市的中考中都采用产生随机数的方法把考生分配到各个考场中.
六、课后作业
习题3.2A组5、6,B组1、2、3.
2、用计算机或计算器(特别是TI图形计算器)产生随机数
1、由试验产生的随机数
3.2.2 (整数值)随机数(randm numbers)的产生
板书设计
课后反思:
人教版新课标A必修3第三章 概率综合与测试教学设计: 这是一份人教版新课标A必修3第三章 概率综合与测试教学设计,共2页。教案主要包含了教学内容,教学目标,教学重点和难点,教学过程等内容,欢迎下载使用。
人教版新课标A必修33.2.2随机数的产生教案: 这是一份人教版新课标A必修33.2.2随机数的产生教案,共4页。教案主要包含了教学目标,重点与难点,教学过程等内容,欢迎下载使用。
2021学年3.2.2随机数的产生教学设计: 这是一份2021学年3.2.2随机数的产生教学设计,共4页。教案主要包含了教学目标,重点与难点,教学过程等内容,欢迎下载使用。