2020-2021学年2.2直接证明与间接证明教课ppt课件
展开当我们直接从正面考虑不易解决问题时,于是就要改变思维方向,从结论入手,反面思考。这种从“正面难解决就从反面思考”的思维方式就是我们通常所说的间接解法中的一种——反证法. (又比如课本的思考)例1:用反证法证明:如果a>b>0,那么例2 已知a≠0,证明x的方程ax=b有且只有一个根.例3:用反证法证明:圆的两条不是直径的相交弦不能互相平分。已知:如图,在⊙O中,弦AB、CD交于点P,且AB、CD不是直径.求证:弦AB、CD不被P平分.由于P点一定不是圆心O,连结OP,根据垂径定理的推论,有OP⊥AB,OP⊥CD,所以,弦AB、CD不被P平分。证明:假设弦AB、CD被P平分,即过点P有两条直线与OP都垂直,这与垂线性质矛盾。(1)用反证法证明命题的一般步骤是什么? 用反证法在归谬中所导出的矛盾可以是与题设矛盾,与假设矛盾,与已知定义、公理、定理矛盾,自相矛盾等.①反设②归谬③结论(2)用反证法证题,矛盾的主要类型有哪些?方法小结: 1直接证明:直接从原命题的条件逐步推得结论成立.2.反证法是一种常用的间接证明方法.(3)适宜使用反证法的情况: (1)结论以否定形式出现;(2)结论以“至多----,” ,“至少---” 形式出现;(3)唯一性、存在性问题;(4)结论的反面比原结论更具体更容易研究的命题。正难则反!说明:常用的正面叙述词语及其否定:不等于小于或等于(≤)大于或等于(≥)不是不都是至少有两个一个也没有某个某些至少有n+1个某两个 求证: 是无理数. A、B、C三个人,A说B撒谎,B说C撒谎,C说A、B都撒谎。则C必定是在撒谎,为什么?分析:假设C没有撒谎, 则C真. - - 那么A假且B假;由A假, 知B真. 这与B假矛盾.那么假设C没有撒谎不成立,则C必定是在撒谎.说谎者悖论 M:我们陷入了著名的说谎者悖论之中。下面是它的最简单的形式。甲:这句话是错的。M:上面这个句子对吗?如果是对的,这句话就是错的!如果这句话是错的,那这个句子就对了!像这样矛盾的说法比你所能想到的还要普遍得多。唐·吉诃德悖论 M:小说《唐·吉诃德》里描写过一个国家.它有一条奇怪的法律:每一个旅游者都要回答一个问题。问,你来这里做什么?M:如果旅游者回答对了。一切都好办。如果回答错了,他就要被绞死。 M:一天,有个旅游者回答——旅游者:我来这里是要被绞死。M:这时,卫兵慌了神,如果他们不把这人绞死,他就说错了,就得受绞刑。可是,如果他们绞死他,他就说对了,就不应该绞死他。 M:为了做出决断,旅游者被送到国王那里。苦苦想了好久,国王才说——国王:不管我做出什么决定,都肯定要破坏这条法律。我们还是宽大为怀算了,让这个人自由吧。
人教版新课标A选修2-22.1合情推理与演绎推理教课内容ppt课件: 这是一份人教版新课标A选修2-22.1合情推理与演绎推理教课内容ppt课件
选修2-22.1合情推理与演绎推理课文配套课件ppt: 这是一份选修2-22.1合情推理与演绎推理课文配套课件ppt
人教版新课标A选修2-22.1合情推理与演绎推理课堂教学课件ppt: 这是一份人教版新课标A选修2-22.1合情推理与演绎推理课堂教学课件ppt