2021学年1.3导数在研究函数中的应用集体备课ppt课件
展开
这是一份2021学年1.3导数在研究函数中的应用集体备课ppt课件
1.3 导数在研究函数中的应用1.3.1 函数的单调性与导数借助于函数的图象了解函数的单调性与导数的关系,能利用导数研究函数的单调性,会用导数法求函数的单调区间.本节重点:利用导数研究函数的单调性.本节难点:用导数求函数单调区间的步骤.1.在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题的过程中,只能在定义域内通过讨论导数的符号,来判断函数的单调区间.2.在对函数划分单调区间时,除了必须确定使导数等于零的点外,还要注意定义区间内的不连续点或不可导点.3.注意在某一区间内f′(x)>0(或f′(x)0时,y′≥0,函数在R上单调递增;(2)当aln(1+x).[点评] 此类题的解题步骤一般是:首先构造函数,然后再采用求导的方法证明.利用函数的单调性证明不等式也是证明不等式常用的方法.已知:x>0,求证:x>sinx.[证明] 设f(x)=x-sinx(x>0)f′(x)=1-cosx≥0对x∈(0,+∞)恒成立∴函数f(x)=x-sinx在(0,+∞)上是单调增函数又f(0)=0,∴f(x)>0对x∈(0,+∞)恒成立即:x>sinx(x>0).[例4] 已知向量a=(x2,x+1),b=(1-x,t),若函数f(x)=a·b在区间(-1,1)上是增函数,求t的取值范围.[分析] 由向量的数量积和运算法则求函数f(x)的解析表达式,再f′(x)≥0在(-1,1)上恒成立,求出t的范围.[解析] 解法1:f(x)=a·b=x2(1-x)+t(x+1)=-x3+x2+tx+tf′(x)=-3x2+2x+t∵函数f(x)在(-1,1)上是增函数,∴f′(x)≥0在x∈(-1,1)上恒成立∴-3x2+2x+t≥0在(-1,1)上恒成立即t≥3x2-2x在(-1,1)上恒成立令g(x)=3x2-2x,x∈(-1,1)故要使t≥3x2-2x在区间(-1,1)上恒成立,只需t≥5,即所求t的取值范围为:t≥5.解法2:依题意,得f(x)=x2(1-x)+t(x+1)=-x3+x2+tx+tf′(x)=-3x2+2x+t∵函数f(x)在区间(-1,1)上是增函数,∴f′(x)≥0对x∈(-1,1)恒成立又∵f′(x)的图象是开口向下的抛物线∴当且仅当f′(1)=t-1≥0,且f′(-1)=t-5≥0时,即t≥5时,f′(x)在区间(-1,1)上满足f′(x)>0使f(x)在(-1,1)上是增函数故t的取值范围是t≥5.[点评] 已知函数的单调性,确定字母的取值范围是高考考查的重点内容,解决这类问题的方法主要有两种,其一,转化为函数求最值,其二,若能比较容易求出函数的单调区间时,可利用子区间来解决.特别注意的是,若导函数为二次函数时,也可借助图象,利用数形结合思想来解决,如上例中的解法2.[解析] f′(x)=x2-ax+a-1=(x-1)[x-(a-1)]当a-1≤1,即a≤2时,函数f(x)在(1,+∞)上为增函数,不合题意.当a-1>1,即a>2时,函数f(x)在(-∞,1)上为增函数,[例5] f′(x)是f(x)的导函数,f′(x)的图象如图所示,则f(x)的图象可能是 ( )[分析] 导函数值的正负决定了函数的增减,导函数值增减决定了函数值变化的快慢.[答案] D[解析] 由图可知,当b>x>a时,f′(x)>0,故在[a,b]上,f(x)为增函数.且又由图知f′(x)在区间[a,b]上先增大后减小,即曲线上每一点处切线的斜率先增大再减小,故选D.[点评] 本题的关键是正确理解导函数与函数之间的关系.如图所示,单位圆中弧AB的长为x,f(x)表示弧AB与弦AB所围成的弓形面积的2倍,则函数y=f(x)的图象是( )[答案] D因为当0≤x
相关课件
这是一份选修2-21.3导数在研究函数中的应用教课课件ppt
这是一份人教版新课标A选修2-21.3导数在研究函数中的应用集体备课课件ppt
这是一份高中人教版新课标A1.3导数在研究函数中的应用评课ppt课件