


2021年人教版数学九年级下册《相似三角形性质与判定》同步练习题(含答案)
展开
这是一份2021年人教版数学九年级下册《相似三角形性质与判定》同步练习题(含答案),共11页。
2021年人教版数学九年级下册《相似三角形性质与判定》同步练习题一、选择题1.如图,已知AB∥DE,∠AFC=∠E,则图中相似的三角形共有( ) A.1对 B.2对 C.3对 D.4对2.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC等于( ) A.1:4 B.1:3 C.2:3 D.1:23.如图,在平行四边形ABCD中,AB=9,AD=6,∠ADC的平分线交AB于点E,交CB的延长线于点F,AG⊥DE,垂足为G.若AG=4,则△BEF的面积是( ) A. B.2 C.3 D.44.如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是( )5.如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB于点D,连接AE,则S△ADE:S△CDB的值等于( ) A.1: B.1: C.1:2 D.2:36.如图,菱形ABCD的对角线AC=3cm,把它沿对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形 ENCM 的面积之比为( ) A.9:4 B.12:5 C.3:1 D.5:27.如图,点P是△ABC的边AB上的一点,过点P作直线(不与直线AB重合)截△ABC,使截得的三角形与原三角形相似.满足这样条件的直线最多有( )A.2条 B.3条 C.4条 D.5条8.如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的面积为( )A.81 B. C. D.9.如图,大正方形中有2个小正方形,如果它们的面积分别是S1、S2 ,那么S1、S2的大小关系为( ) A.S1>S2 B.S1=S2 C.S1<S2 D.S1、S2的大小关系不确定10.如图,直线l1∥l2,AF:FB=2:3,BC:CD=2:1,则AE:EC是( ) A.5:2 B.4:1 C.2:1 D.3:211.如图,∠A=∠B=90°,AB=7,AD=2,BC=3,在边AB上取点P,使得△PAD与△PBC相似,则这样的P点共有( ) A.1个 B.2个 C.3个 D.4个12.如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD上滑动,当DM为( )时,△ABE与以D、M、N为顶点的三角形相似.二、填空题13.在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE= 时,以A、D、E为顶点的三角形与△ABC相似.14.如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则AD:AB的值为 .15.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为 .16.如图,双曲线y=kx-1经过Rt△BOC斜边上的点A,且满足OA:AB=2:3,与BC交于点D,S△BOD=21,求k= .17.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)18.如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:SⅢ= . 三、解答题19.如图,已知在△ABC中,AB=AC,D为CB延长线上一点,E为BC延长线上一点,且满足AB2=DB·CE.求证:△ADB∽△EAC. 20.如图,D是△ABC的边AB上一点,连接CD,若AD=2,BD=4,∠ACD=∠B,求AC的长. 21.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,连接OE.(1)求证:△DBE是等腰三角形;(2)求证:△COE∽△CAB. 22.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)试判断FG与⊙O的位置关系,并说明理由.(2)若AC=3,CD=2.5,求FG的长. 23.如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长. 24.如图,已知⊙O中,AB为直径,CD⊥AB于E点,P点在AB延长线上一点,连PC、BC,CB平分∠PCD. (1)求证:PC为⊙O切线; (2)若AE=8,BE=2,求BC的长; (3)求证:PC2=PB∙PA. 25.如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长. 26.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.
0.答案解析1.C2.D3.B4.A5.D6.D7.C8.C9.A10.略11.C12.C13.答案为:或.14.答案为:0.5.15.答案为:6.16.答案是:8.17.答案为:.18.答案为:1:3:5;19.证明:20.解:21.证明:(1)连接OD,如图所示:∵DE是⊙O的切线,∴∠ODE=90°,∴∠ADO+∠BDE=90°,∵∠ACB=90°,∴∠CAB+∠CBA=90°,∵OA=OD,∴∠CAB=∠ADO,∴∠BDE=∠CBA,∴EB=ED,∴△DBE是等腰三角形;(2)∵∠ACB=90°,AC是⊙O的直径,∴CB是⊙O的切线,∵DE是⊙O的切线,∴DE=EC,∵EB=ED,∴EC=EB,∵OA=OC,∴OE∥AB,∴△COE∽△CAB.22.解:(1)FG与⊙O相切,理由:如图,连接OF,∵∠ACB=90°,D为AB的中点,∴CD=BD,∴∠DBC=∠DCB,∵OF=OC,∴∠OFC=∠OCF,∴∠OFC=∠DBC,∴OF∥DB,∴∠OFG+∠DGF=180°,∵FG⊥AB,∴∠DGF=90°,∴∠OFG=90°,∴FG与⊙O相切;(2)连接DF,∵CD=2.5,∴AB=2CD=5,∴BC==4,∵CD为⊙O的直径,∴∠DFC=90°,∴FD⊥BC,∵DB=DC,∴BF=BC=2,∵sin∠ABC=,即=,∴FG=.23.证明:24.答案:(1)连OC;(2);(3)连接AC,证明△APC与△CPB相似.25.(1)证明:∵将△BCE绕点C顺时针旋转到△DCF的位置,∴△BCE≌△DCF,∴∠FDC=∠EBC,∵BE平分∠DBC,∴∠DBE=∠EBC,∴∠FDC=∠EBD,∵∠DGE=∠DGE,∴△BDG∽△DEG.(2)解:∵△BCE≌△DCF,∴∠F=∠BEC,∠EBC=∠FDC,∵四边形ABCD是正方形,∴∠DCB=90°,∠DBC=∠BDC=45°,∵BE平分∠DBC,∴∠DBE=∠EBC=22.5°=∠FDC,∴∠BEC=67.5°=∠DEG,∴∠DGE=180°﹣22.5°﹣67.5°=90°,即BG⊥DF,∵∠BDF=45°+22.5°=67.5°,∠F=90°﹣22.5°=67.5°,∴∠BDF=∠F,∴BD=BF,∴DF=2DG,∵△BDG∽△DEG,BG×EG=4,∴=,∴BG×EG=DG×DG=4,∴DG2=4,∴DG=2,∴BE=DF=2DG=4.26.(1)证明:∵四边形EFGH是正方形,∴EH∥BC,∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC.(2)解:如图设AD与EH交于点M.∵∠EFD=∠FEM=∠FDM=90°,∴四边形EFDM是矩形,∴EF=DM,设正方形EFGH的边长为x,∵△AEH∽△ABC,∴=,∴=,∴x=,∴正方形EFGH的边长为cm,面积为cm2.
