高中数学人教A版 (2019)必修 第一册4.2 指数函数教学ppt课件
展开1、掌握指数函数的图象和性质,培养学生实际应用函数的能力;2、通过观察图象,分析、归纳、总结指数函数的性质;3、在指数函数的学习过程中,体验数学的科学价值并养成勇于探索的良好习惯.
1.数学抽象:指数函数的图像与性质;2.逻辑推理:图像平移问题;3.数学运算:求函数的定义域与值域;4.数据分析:利用指数函数的性质比较两个函数值的大小:5.数学建模:通过由抽象到具体,由具体到一般的数形结合思想总结指数函数性质.
阅读课本116-117页,思考并完成以下问题1. 结合指数函数的图象,可归纳出指数函数具有哪些性质?2. 指数函数的图象过哪个定点?如何求指数型函数的定义域和值域问题? 要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
题型分析 举一反三
题型一 指数函数的图象问题
解题方法(指数函数的图像问题)
1.指数函数在同一平面直角坐标系中的图象的相对位置与底数大小的关系:在y轴右侧,图象从上到下相应的底数由大变小;在y轴左侧,图象从上到下相应的底数由小变大.无论指数函数的底数a如何变化,指数函数y=ax(a>0,且a≠1)的图象与直线x=1相交于点(1,a),因此,直线x=1与各图象交点的纵坐标即为底数,由此可得底数的大小.2.因为函数y=ax的图象恒过点(0,1),所以对于函数f(x)=kag(x)+b(k,a,b均为常数,且k≠0,a>0,且a≠1).若g(m)=0,则f(x)的图象过定点(m,k+b).3.指数函数y=ax与y= (a>0,且a≠1)的图象关于y轴对称.4.处理函数图象问题的常用方法:一是抓住图象上的特殊点;二是利用图象的变换;三是利用函数的奇偶性与单调性.
1、如图是指数函数:①y=ax,②y=bx,③y=cx,④y=dx的图象,则a,b,c,d与1的大小关系是( )A.a1、解析:(方法一)①②中函数的底数小于1且大于0,在y轴右边,底数越小,图象向下越靠近x轴,故有b2、解析:∵当x+1=0,即x=-1时,f(x)=a0+3=4恒成立,故函数f(x)=ax+1+3恒过(-1,4)点.答案:(-1,4)
所以原函数的图象关于y轴对称.由图象可知值域是(0,1],单调递增区间是(-∞,0],单调递减区间是(0,+∞).
题型二 指数函数的性质及其应用
例4.比较下列各题中两个值的大小:(1) (2 ) ( 3 )
解:(1)(单调性法)由于1.73与1.72.5的底数是1.7,故构造函数y=1.7x,而函数y=1.7x在R上是增函数.又2.5<3,∴1.72.5<1.73.(2)(单调性法)由于 的底数是0.8,故构造函数y=0.8x,而函数y=0.8x在R上是减函数.又 ,∴ .
(3)(中间量法)由指数函数的性质,知0.93.1<0.90=1,1.73.1>1.70=1,则 .
题点二:指数函数的定义域与值域问题例5 求下列函数的定义域与值域
解:(1)∵由x-4≠0,得x≠4,
解题方法(指数函数的性质及其应用)
1.函数y=af(x)(a>0,且a≠1)的定义域、值域:(1)定义域的求法.函数y=af(x)的定义域与y=f(x)的定义域相同.(2)函数y=af(x)的值域的求法如下.①换元,令t=f(x);②求t=f(x)的定义域x∈D;③求t=f(x)的值域t∈M;④利用y=at的单调性求y=at(t∈M)的值域.2.比较幂的大小的常用方法:
1、比较下面两个数的大小:(a-1)1.3与(a-1)2.4(a>1,且a≠2).
2、比较下列各题中两个值的大小:①2.53,2.55.7;
③2.3-0.28,0.67-3.1.
1、解:因为a>1,且a≠2,所以a-1>0,且a-1≠1,若a-1>1,即a>2,则y=(a-1)x是增函数,∴(a-1)1.3<(a-1)2.4.若0
2.①(单调性法)由于2.53与2.55.7的底数是2.5,故构造函数y=2.5x,而函数y=2.5x在R上是增函数.又3<5.7,∴2.53<
③(中间量法)由指数函数的性质,知2.3-0.28<2.30=1,0.67-3.1>0.670=1,则2.3-0.28<0.67-3.1.
人教A版 (2019)4.2 指数函数精品ppt课件: 这是一份人教A版 (2019)4.2 指数函数精品ppt课件,共25页。PPT课件主要包含了学习目标,新知学习,随堂小测,1+∞,解得-3x≤0,-30,偶函数,课堂小结等内容,欢迎下载使用。
人教A版 (2019)必修 第一册第四章 指数函数与对数函数4.2 指数函数获奖ppt课件: 这是一份人教A版 (2019)必修 第一册第四章 指数函数与对数函数4.2 指数函数获奖ppt课件,共40页。PPT课件主要包含了一指数函数的概念,答案B等内容,欢迎下载使用。
数学4.2 指数函数获奖ppt课件: 这是一份数学4.2 指数函数获奖ppt课件,共40页。PPT课件主要包含了一指数函数的概念,答案B等内容,欢迎下载使用。