高中数学人教版新课标A必修32.3.2两个变量的线性相关第2课时教案
展开备课资料
阅读材料
相关关系的强与弱
我们知道,两个变量x、y正(负)相关时,它们就有相同(反)的变化趋势,即当x由小变大时,相应的y有由小(大)变大(小)的趋势,因此可以用回归直线来描述这种关系.与此相关的一个问题是:如何描述x和y之间的这种线性关系的强弱?例如,物理成绩与数学成绩正相关,但数学成绩能够在多大程度上决定物理成绩?这就是相关强弱的问题,类似的还有吸烟与健康的负相关强度、父母身高与子女身高的正相关强度、农作物的产量与施肥量的正相关强度等.
统计中用相关系数r来衡量两个变量之间线性关系的强弱.若相应于变量x的取值xi,变量y的观测值为yi(1≤i≤n),则两个变量的相关系数的计算公式为
r=.
不相同的相关性可以从散点图上直观地反映出来.图1反映了变量x、y之间很强的线性相关关系,而图2中的两个变量的线性相关程度很弱.
对于相关系数r,首先值得注意的是它的符号.当r为正时,表明变量x、y正相关;当r为负时,表明变量x、y负相关.反映在散点图上,图1中的变量x、y正相关.这时的r为正,图2中的变量x、y负相关,这时的r为负.
另一个值得注意的是r的大小.统计学认为,对于变量x、y,如果r∈[-1,-0.75],那么负相关很强;如果r∈[0.75,1],那么正相关很强;如果r∈(-0.75,-0.30]或r∈[0.30,0.75),那么相关性一般;如果r∈[-0.25,0.25],那么相关性较弱.反映在散点图上,图1的r=0.97,这些点有明显的从左下角到右上角沿直线分布趋势,这时用线性回归模型描述两个变量之间的关系效果很好;图2的r=-0.85,这些点也有明显的从左上角到右下角沿直线分布趋势.这时用线性回归模型描述两个变量之间的关系也有好的效果.
你能试着对自己身边的某个问题,确定两个变量,通过收集数据,计算相关系数,然后分析一下能否用线性回归模型来拟合它们之间的关系吗?
图1 图2
(设计者:路致芳)
2020-2021学年2.3.2两个变量的线性相关第2课时教案及反思: 这是一份2020-2021学年2.3.2两个变量的线性相关第2课时教案及反思,共11页。
高中数学人教版新课标A必修32.3.2两个变量的线性相关教学设计: 这是一份高中数学人教版新课标A必修32.3.2两个变量的线性相关教学设计,共8页。
人教版新课标A2.3.2两个变量的线性相关第2课时教案: 这是一份人教版新课标A2.3.2两个变量的线性相关第2课时教案,共11页。