高中数学人教版新课标A必修33.1.1随机事件的概率教案
展开一、〖创设情境〗
日常生活中,有些问题是能够准确回答的.例如,明天太阳一定从东方升起吗?
明天上午第一节课一定是八点钟上课吗?等等,这些事情的发生都是必然的.同时也
有许多问题是很难给予准确回答的.例如,你明天什么时间来到学校?明天中午12:10
有多少人在学校食堂用餐?你购买的本期福利彩票是否能中奖?等等,这些问题的
结果都具有偶然性和不确定性。
二、〖新知探究〗
(一)必然事件、不可能事件和随机事件
思考1:考察下列事件:
(1)导体通电时发热;
(2)向上抛出的石头会下落;
(3)在标准大气压下水温升高到100°C会沸腾.
这些事件就其发生与否有什么共同特点?
思考2:我们把上述事件叫做必然事件,你指出必然事件的一般含义吗?
在条件S下,一定会发生的事件,叫做相对于条件S的必然事件.
让学生列举一些必然事件的实例
思考3:考察下列事件:
(1)在没有水分的真空中种子发芽;(2)在常温常压下钢铁融化;
(3)服用一种药物使人永远年轻.
这些事件就其发生与否有什么共同特点?
思考4:我们把上述事件叫做不可能事件,你指出不可能事件的一般含义吗?
在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件
让学生列举一些不可能事件的实例
思考5:考察下列事件:
(1)某人射击一次命中目标;
(2)马林能夺取北京奥运会男子乒乓球单打冠军;
(3)抛掷一个骰字出现的点数为偶数. 这些事件就其发生与否有什么共同特点?
思考6:我们把上述事件叫做随机事件,你指出随机事件的一般含义吗?
在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件.
让学生列举一些随机事件的实例
思考7:必然事件和不可能事件统称为确定事件,确定事件和随机事件统称为
事件,一般用大写字母A,B,C,…表示.对于事件A,能否通过改变条件,使事件A
在这个条件下是确定事件,在另一条件下是随机事件?你能举例说明吗?
(二):事件A发生的频率与概率
物体的大小常用质量、体积等来度量,学习水平的高低常用考试分数来衡量.对于随机
事件,它发生的可能性有多大,我们也希望用一个数量来反映.
思考1:在相同的条件S下重复n次试验,若某一事件A出现的次数为nA,则称nA为
事件A出现的频数,那么事件A出现的频率fn(A)等于什么?频率的取值范围是什么?
思考2:历史上曾有人作过抛掷硬币的大量重复试验,结果如下表所示:
在上述抛掷硬币的试验中,正面向上发生的频率的稳定值为多少?
思考3:某农科所对某种油菜籽在相同条件下的发芽情况进行了大量重复试验,
结果如下表所示:
在上述油菜籽发芽的试验中,每批油菜籽发芽的频率的稳定值为多少? 0.9
思考4:上述试验表明,随机事件A在每次试验中是否发生是不能预知的,但是在大量重
复试验后,随着试验次数的增加,事件A发生的频率呈现出一定的规律性,这个规律性
是如何体现出来的?
事件A发生的频率较稳定,在某个常数附近摆动.
思考5:既然随机事件A在大量重复试验中发生的频率fn(A)趋于稳定,在某个常数附近摆动,那我们就可以用这个常数来度量事件A发生的可能性的大小,并把这个常数叫做事件A发生的概率,记作P(A).那么在上述抛掷硬币的试验中,正面向上发生的概率是多少?在上述油菜籽发芽的试验中,油菜籽发芽的概率是多少?
思考6:在实际问题中,随机事件A发生的概率往往是未知的(如在一定条件下射击命中目标的概率),你如何得到事件A发生的概率?
通过大量重复试验得到事件A发生的频率的稳定值,即概率.
思考7:在相同条件下,事件A在先后两次试验中发生的频率fn(A)是否一定相等?事件A在先后两次试验中发生的概率 P(A)是否一定相等?
频率具有随机性,做同样次数的重复试验,事件A发生的频率可能不相同;概率是一个确定的数,是客观存在的,与每次试验无关.
思考8:必然事件、不可能事件发生的概率分别为多少?概率的取值范围是什么?
三、〖典型例题〗
例1 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?
(1)如果a>b,那么a一b>0;
(2)在标准大气压下且温度低于0°C时,冰融化;
(3)从分别标有数字l,2,3,4,5的5张标签中任取一张,得到4号签;
(4)某电话机在1分钟内收到2次呼叫;
〈5)手电筒的的电池没电,灯泡发亮;
(6)随机选取一个实数x,得|x|≥0.
随堂练习:自主学习丛书43页例1
例2某射手在同一条件下进行射击,结果如下表:
(!)计算表中击中靶心的各个频率;如上表
(2)这个射手射击一次,击中靶心的概率约是多少?0.90
四、〖小结〗
1.概率是频率的稳定值,根据随机事件发生的频率只能得到概率的估计值.
2.随机事件A在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A发生的频率逐渐稳定在区间[0,1]内的某个常数上(即事件A的概率),这个常数越接近于1,事件A发生的概率就越大,也就是事件A发生的可能性就越大;反之,概率越接近于0,事件A发生的可能性就越小.因此,概率就是用来度量某事件发生的可能性大小的量.
3.任何事件的概率是0~1之间的一个确定的数,小概率(接近0)事件很少发生,大概率(接近1)事件则经常发生,知道随机事件的概率的大小有利于我们作出正确的决策.
五、〖随堂练习〗
做同时掷两枚硬币的实验,观察实验的结果.
(1)实验可能出现的结果有几种?分别把它们表示出来.
(2)做100次实验,每种结果出现的频数,频率各是多少?
与其他各名同学的实验结果汇总,你会发现什么?你能估计每种结果出现的概率吗?
2.(1)给出一个概率很小的随机事件的例子;
(2)给出一个概率很大的随机事件的例子.
六、〖板书设计〗
七、〖教后记〗
1.
2.
八、〖巩固练习〗
自主学习从书44页的巩固练习周次
上课时间
月 日
周
课型
新授课
主备人
使用人
课题
3.1.1随机事件的概率
教学目标
1.了解随机事件、必然事件、不可能事件的概念;2.正确理解事件A出现的频率的意义;3.正确理解概率的概念和意义,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系;
教学重点
事件的分类;概率的定义以及和频率的区别与联系;
教学难点
随机事件发生存在的统计规律性.
课前准备
多媒体课件,硬币数枚
抛掷次数
正面向上次数
频率0.5
2 02048
1061
0.5181
4 04040
2048
0.5069
12000
6019
0.5016
24000
12012
0.5005
30000
14984
0.4996
72088
36124
0.5011
每批粒数
2
5
10
70
130
310
700
1500
2000
3000
发芽的粒数
2
4
9
60
116
282
639
1339
1806
27150
发芽的频数
1
0.8
0.9
0.857
0.892
0.910
0.913
0.893
0.903
0.905
射击次数数n
10
20
50
100
200
500
击中靶心次数m
8
19
44
93
178
453
击中靶心频率
0.8
0.95
0.88
0.93
0.89
0.90
§ 随机事件的概率
一、(1)必然事件 例题讲解
(2)不可能事件
(3)随机事件
二、概率定义 课堂小结
高中数学人教版新课标A必修33.1.1随机事件的概率教学设计: 这是一份高中数学人教版新课标A必修33.1.1随机事件的概率教学设计,共2页。教案主要包含了等可能事件概率计算,相互独立事件同时发生概率计算,独立重复试验概率计算,随机变量概率分布与期望计算等内容,欢迎下载使用。
高中数学人教版新课标A必修33.1.1随机事件的概率教学设计: 这是一份高中数学人教版新课标A必修33.1.1随机事件的概率教学设计,共3页。教案主要包含了导入新课,新课讲解,课堂练习,课堂小结,课后作业等内容,欢迎下载使用。
人教版新课标A必修33.1.1随机事件的概率教案及反思: 这是一份人教版新课标A必修33.1.1随机事件的概率教案及反思,共4页。教案主要包含了简单随机抽样的概念,抽签法和随机数法等内容,欢迎下载使用。