高中数学人教版新课标A必修33.1.1随机事件的概率课堂检测
展开3-1-1随机事件的概率
一、选择题
1.下列现象中,是随机现象的有( )
①在一条公路上,交警记录某一小时通过的汽车超过300辆.
②若a为整数,则a+1为整数.
③发射一颗炮弹,命中目标.
④检查流水线上一件产品是合格品还是次品.
A.1个 B.2个
C.3个 D.4个
[答案] C
[解析] 当a为整数时,a+1一定为整数,是必然现象,其余3个均为随机现象.
2.下列事件中,不可能事件为( )
A.钝角三角形两个小角之和小于90°
B.三角形中大边对大角,大角对大边
C.锐角三角形中两个内角和小于90°
D.三角形中任意两边的和大于第三边
[答案] C
[解析] 若两内角的和小于90°,则第三个内角必大于90°,故不是锐角三角形,∴C为不可能事件,而A、B、D均为必然事件.
3.12个同类产品中含有2个次品,现从中任意抽出3个,必然事件是( )
A.3个都是正品 B.至少有一个是次品
C.3个都是次品 D.至少有一个是正品
[答案] D
[解析] A,B都是随机事件,因为只有2个次品,所以“抽出的三个全是次品”是不可能事件,“至少有一个是正品”是必然事件.
4.某人连续抛掷一枚均匀硬币30000次,则正面向上的次数最有可能的是( )
A.13000 B.16201
C.11702 D.15000
[答案] D
5.先从一副扑克牌中抽取5张红桃,4张梅花,3张黑桃,再从抽取的12张牌中随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这种事情( )
A.可能发生 B.不可能发生
C.必然发生 D.无法判断
[答案] C
[解析] 因为12张牌中,红桃、梅花、黑桃中任两种的张数之和都小于10,故从12张扑克中抽取10张,三种牌一定都有.
6.下列事件:
①如果a>b,那么a-b>0.
②任取一实数a(a>0且a≠1),函数y=logax是增函数.
③某人射击一次,命中靶心.
④从盛有一红、二白共三个球的袋子中,摸出一球观察结果是黄球.
其中是随机事件的为( )
A.①② B.③④
C.①④ D.②③
[答案] D
[解析] ①是必然事件;②中a>1时, y=logax单调递增,0<a<1时,y=log为减函数,故是随机事件;③是随机事件;④是不可能事件.
7.在抛掷一枚硬币的试验中共抛掷100次,“正面朝上”的频率为0.49,则“正面朝下”的次数是( )
A.0.49 B.49
C.0.51 D.51
[答案] D
[解析] 由条件可知,“正面朝下”的频率为0.51,又共抛掷100次,所以“正面朝下”的次数是0.51×100=51.
8.某人将一枚硬币连掷了10次,正面朝上的情形出现了6次,若用A表示正面朝上这一事件,则A的( )
A.概率为 B.频率为
C.频率为6 D.概率接近0.6
[答案] B
[解析] 抛掷一次即进行一次试验,抛掷10次,正面向上6次,即事件A的频数为6,∴A的频率为=.∴选B.
9.下列说法中,不正确的是( )
A.某人射击10次,击中靶心8次,则他击中靶心的频率是0.8
B.某人射击10次,击中靶心7次,则他击不中靶心的频率是0.7
C.某人射击10次,击中靶心的频率是,则他应击中靶心5次
D.某人射击10次,击中靶心的频率是0.6,则他击不中靶心的次数应为4
[答案] B
10.从存放号码分别为1,2,…,10的卡片的盒子里,有放回地取100次,每次取一张卡片,并记下号码,统计结果如下:
卡片号码 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
取到的次数 | 13 | 8 | 5 | 7 | 6 | 13 | 18 | 10 | 11 | 9 |
则取到号码为奇数的频率是( )
A.0.53 B.0.5
C.0.47 D.0.37
[答案] A
[解析] 取到号码为奇数的卡片共有13+5+6+18+11=53(次),所以取到号码为奇数的频率为=0.53.
二、填空题
11.已知随机事件A发生的频率是0.02,事件A出现了10次,那么共进行了________次试验.
[答案] 500
[解析] 设共进行了n次试验,
则=0.02,解得n=500.
12.一家保险公司想了解汽车挡风玻璃破碎的概率,公司收集了20 000部汽车,时间从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年时间里挡风玻璃破碎的概率近似为________.
[答案] 0.03
[解析] 在一年里汽车的挡风玻璃破碎的频率为=0.03,所以估计其破碎的概率约为0.03.
13.某人进行打靶练习,共射击10次,其中有2次10环,3次9环,4次8环,1次脱靶,在这次练习中,这个人中靶的频率是____,中9环的概率是________.
[答案] 0.9 0.3
[解析] 打靶10次,9次中靶,故中靶的概率为=0.9,其中3次中9环,故中9环的频率是=0.3.
14.一袋中装有10个红球,8个白球,7个黑球,现在把球随机地一个一个摸出来,为了保证在第k次或第k次之前能首次摸出红球,则k的最小值为________.
[答案] 16
[解析] 至少需摸完黑球和白球共15个.
三、解答题
15.设集合M={1,2,3,4},a∈M,b∈M,(a,b)是一个基本事件.
(1)“a+b=5”这一事件包含哪几个基本事件?“a<3且b>1”呢?
(2)“ab=4”这一事件包含哪几个基本事件?“a=b”呢?
(3)“直线ax+by=0的斜率k>-1”这一事件包含哪几个基本事件?
[解析] 这个试验的基本事件构成集合Ω={(1,1),(1,2),(1,3), (1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}.
(1)“a+b=5”包含以下4个基本事件:(1,4),(2,3),(3,2),(4,1).
“a<3且b>1”包含以下6个基本事件:(1,2),(1,3),(1,4),(2,2),(2,3),(2,4).
(2)“ab=4”这一事件包含以下3个基本事件:(1,4),(2,2),(4,1);
“a=b”这一事件包含以下4个基本事件:(1,1),(2,2),(3,3),(4,4).
(3)直线ax+by=0的斜率k=->-1,
∴a<b,∴包含以下6个基本事件:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).
16.从含有两件正品a1,a2和一件次品b的三件产品中每次任取一件,每次取出后不放回,连续取两次.
(1)写出这个试验的所有结果;
(2)设A为“取出两件产品中恰有一件次品”,写出事件A;
(3)把“每次取出后不放回”这一条件换成“每次取出后放回”,其余不变,请你回答上述两个问题.
[解析] (1)这个试验的所有可能结果Ω={(a1,a2),(a1,b),(a2, b),(a2,a1),(b,a1),(b,a2)}.
(2)A={(a1,b),(a2,b),(b,a1),(b,a2)}.
(3)①这个试验的所有可能结果Ω={(a1,a1),(a1,a2),(a1,b),(a2,a1),(a2,a2),(a2,b),(b,a1),(b,a2),(b,b)}.②A={(a1,b),(a2,b),(b,a1),(b,a2)}.
17.某企业生产的乒乓球被2008年北京奥委会指定为乒乓球比赛专用球.日前有关部门对某批产品进行了抽样检测,检测结果如下表所示:
抽取球数n | 50 | 100 | 200 | 500 | 1 000 | 2 000 |
优等品数m | 45 | 92 | 194 | 470 | 954 | 1 902 |
优等品频率 |
|
|
|
|
|
|
(1)计算表中乒乓球为优等品的频率;
(2)从这批乒乓球产品中任取一个,检测出为优等品的概率是多少?(结果保留到小数点后三位)
[解析] (1)依据公式fn(A)=,可以计算表中乒乓球优等品的频率依次是0.900,0.920,0.970,0.940,0.954,0.951.
(2)由(1)知抽取的球数n不同,计算得到的频率值虽然不同,但随着抽球数的增多,都在常数0.950的附近摆动,所以任意抽取一个乒乓球检测时,质量检测为优等品的概率约为0.950.
18.在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如下表:
分组 | 频数 |
[1.30,1.34) | 4 |
[1.34,1.38) | 25 |
[1.38,1.42) | 30 |
[1.42,1.46) | 29 |
[1.46,1.50) | 10 |
[1.50,1.54) | 2 |
合计 | 100 |
(1)请作出频率分布表,并画出频率分布直方图;
(2)估计纤度落在[1.38,1.50)中的概率及纤度小于1.40的概率是多少?
[解析] (1)频率分布表如下表.
分组 | 频数 | 频率 |
[1.30,1.34) | 4 | 0.04 |
[1.34,1.38) | 25 | 0.25 |
[1.38,1.42) | 30 | 0.30 |
[1.42,1.46) | 29 | 0.29 |
[1.46,1.50) | 10 | 0.10 |
[1.50,1.54) | 2 | 0.02 |
合计 | 100 | 1.00 |
频率分布直方图如图所示.
(2)纤度落在[1.38,1.50)中的频数是30+29+10=69,
则纤度落在[1.38,1.50)中的频率是=0.69,
所以估计纤度落在[1.38,1.50)中的概率为0.69.
纤度小于1.40的频数是4+25+×30=44,
则纤度小于1.40的频率是=0.44,
所以估计纤度小于1.40的概率是0.44.
人教版新课标A必修33.1.1随机事件的概率课后作业题: 这是一份人教版新课标A必修33.1.1随机事件的概率课后作业题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教版新课标A必修33.1.1随机事件的概率同步达标检测题: 这是一份人教版新课标A必修33.1.1随机事件的概率同步达标检测题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
高中数学人教版新课标A必修33.1.1随机事件的概率测试题: 这是一份高中数学人教版新课标A必修33.1.1随机事件的概率测试题,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。