人教版新课标A必修33.1.1随机事件的概率教案设计
展开教学目标:1.了解随机事件、必然事件、不可能事件、等可能性事件、确定事件等基本概念. 2.了解随机事件的发生存在着规律性和随机事件概率的定义. 3.理解频率与概率的区别与联系. | |||||||||||||||||||||
教学重点:本节重点是随机事件、必然事件、不可能事件、频率、概率等基本概念; | |||||||||||||||||||||
教学难点:难点是对概率定义的理解 | |||||||||||||||||||||
教学用具:投影仪 | |||||||||||||||||||||
教学方法:讲练结合 | |||||||||||||||||||||
教学过程: 一、课题:课本通过抛掷硬币的试验来观察“抛掷硬币时,正面朝上”这一随机事件. 开始时,每个人的记录结果各不相同,杂乱无章,然后通过小组统计、全班统计、计算机模拟抛硬币试验统计逐步向我们展示:随着试验次数的增多,随机事件的结果逐步呈现出一定的规律性,通过频率图的表示,使我们更清楚地发现.频率在某个常数附近摆动,从而引出课题 二、新课教学:1、创设情境:日常生活中,有些问题是很难给予准确无误的回答的。例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等。 2、基本概念: (1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件; (2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件; (4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件; (5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。 (6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事 3、例题分析: 例1 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件? (1)“抛一石块,下落”. (2)“在标准大气压下且温度低于0℃时,冰融化”; (3)“某人射击一次,中靶”; (4)“如果a>b,那么a-b>0”; (5)“掷一枚硬币,出现正面”; (6)“导体通电后,发热”; (7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”; (8)“某电话机在1分钟内收到2次呼叫”; (9)“没有水份,种子能发芽”; (10)“在常温下,焊锡熔化”. 答:根据定义,事件(1)、(4)、(6)是必然事件;事件(2)、(9)、(10)是不可能事件;事件(3)、(5)、(7)、(8)是随机事件. 例2 某射手在同一条件下进行射击,结果如下表所示:
(1)填写表中击中靶心的频率; (2)这个射手射击一次,击中靶心的概率约是什么? 分析:事件A出现的频数nA与试验次数n的比值即为事件A的频率,当事件A发生的频率fn(A)稳定在某个常数上时,这个常数即为事件A的概率。 解:(1)表中依次填入的数据为:0.80,0.95,0.88,0.92,0.89,0.91. (2)由于频率稳定在常数0.89,所以这个射手击一次,击中靶心的概率约是0.89。 小结:概率实际上是频率的科学抽象,求某事件的概率可以通过求该事件的频率而得之。 例3 某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大? 分析:中靶的频数为9,试验次数为10,所以靶的频率为=0.9,所以中靶的概率约为0.9. 解:此人中靶的概率约为0.9;此人射击1次,中靶的概率为0.9;中10环的概率约为0.2. 三、课堂练习:课本P113 1、2、3 归纳小结:1.客观世界中的事件分为随机事件、不可能事件、必然事件三类. 2.随机事件的统计规律表现在:随机事件的频率即此事件发生的次数与试验总次数的比值具有稳定性.即总是在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小.这个常数叫做这个随机事件的概率.概率可以看作频率在理论上的期望值,是概率的一种统计定义. 3.由概率的统计定义可以得到:必然事件的概率为1,不可能事件的概率为0,而任意事件A的概率是在[0,1]内的一个数.虽然必然事件、不可能事件和随机事件是三类不同的事件,但在一定情况下又可以统一起来,这正反映了事物间既对立又统一的辩证关系.
|
2020-2021学年3.3.1几何概型教学设计及反思: 这是一份2020-2021学年3.3.1几何概型教学设计及反思,共2页。教案主要包含了课题,新课教学,课堂练习等内容,欢迎下载使用。
高中数学人教版新课标A必修33.1.1随机事件的概率教学设计: 这是一份高中数学人教版新课标A必修33.1.1随机事件的概率教学设计,共3页。教案主要包含了导入新课,新课讲解,课堂练习,课堂小结,课后作业等内容,欢迎下载使用。
高中数学人教版新课标A必修33.1.2概率的意义教学设计: 这是一份高中数学人教版新课标A必修33.1.2概率的意义教学设计,共2页。教案主要包含了课题,新课教学,课堂练习等内容,欢迎下载使用。