开学活动
搜索
    上传资料 赚现金

    高中数学必修2:1.1 柱、锥、台、球的结构特征教案1

    高中数学必修2:1.1  柱、锥、台、球的结构特征教案1第1页
    还剩1页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教版新课标A必修21.1 空间几何体的结构教学设计

    展开

    这是一份高中数学人教版新课标A必修21.1 空间几何体的结构教学设计,共2页。教案主要包含了新课导入,讲授新课,巩固练习等内容,欢迎下载使用。
    第一课时   1.1.1柱、锥、台、球的结构特征(一)教学要求:通过实物模型,观察大量的空间图形,认识柱体、锥体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.教学重点:让学生感受大量空间实物及模型,概括出柱体、锥体的结构特征.教学难点:柱、锥的结构特征的概括.教学过程一、新课导入1. 讨论:经典的建筑给人以美的享受,其中奥秘为何?世间万物,为何千姿百态?2. 提问:小学与初中在平面上研究过哪些几何图形?在空间范围上研究过哪些?3. 导入:进入高中,在必修的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算.二、讲授新课:1. 教学棱柱、棱锥的结构特征: 提问:举例生活中有哪些实例给我们以两个面平行的形象?  讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征? 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱.  列举生活中的棱柱实例(三棱镜、方砖、六角螺帽).   结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线. 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等.   表示:棱柱ABCDE-ABCDE 讨论:埃及金字塔具有什么几何特征? 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.结合图形认识:底面、侧面、侧棱、顶点、高. 讨论:棱锥如何分类及表示? 讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.2. 教学圆柱、圆锥的结构特征: 讨论:圆柱、圆锥如何形成? 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥.  列举生活中的棱柱实例  结合图形认识:底面、轴、侧面、母线、高. 表示方法 讨论:棱柱与圆柱、棱柱与棱锥的共同特征?  柱体、锥体. 观察书P2若干图形,找出相应几何体; 举例:生活中的柱体、锥体.3. 小结:几何图形;相关概念;相关性质;生活实例三、巩固练习:1. 练习:教材P7  12. 2. 已知圆锥的轴截面等腰三角形的腰长为 5cm,,面积为12cm,求圆锥的底面半径.3.已知圆柱的底面半径为3cm,,轴截面面积为24cm,求圆柱的母线长.4.正四棱锥的底面积为46,侧面等腰三角形面积为6,求正四棱锥侧棱. 第二课时   1.1.1柱、锥、台、球的结构特征(二)教学要求:通过实物模型,观察大量的空间图形,认识台体、球体及简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.教学重点:让学生感受大量空间实物及模型,概括出台体、球体的结构特征.教学难点:柱、锥、台、球的结构特征的概括.教学过程一、复习准备1. 结合棱柱、棱锥、圆柱、圆锥的几何图形,说出:定义、分类、表示、2. 结合棱柱、棱锥、圆柱、圆锥的几何图形,说出各几何体的一些几何性质?二、讲授新课1. 教学棱台与圆台的结构特征: 讨论:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征? 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台.  列举生活中的实例结合图形认识:上下底面、侧面、侧棱(母线)、顶点、高.  讨论:棱台的分类及表示? 圆台的表示?圆台可如何旋转而得? 讨论:棱台、圆台分别具有一些什么几何性质?  棱台:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点.  圆台:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等. 讨论:棱、圆与柱、锥、台的组合得到6个几何体. 棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥有什么关系? (以台体的上底面变化为线索)2.教学球体的结构特征: 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫球体.列举生活中的实例结合图形认识:球心、半径、直径. 球的表示. 讨论:球有一些什么几何性质? 讨论:球与圆柱、圆锥、圆台有何关系?(旋转体)棱台与棱柱、棱锥有什么共性?(多面体)3. 教学简单组合体的结构特征: 讨论:矿泉水塑料瓶由哪些几何体构成?灯管呢? 定义:由柱、锥、台、球等几何结构特征组合的几何体叫简单组合体.   列举生活中的实例4. 练习圆锥底面半径为1cm,高为cm,其中有一个内接正方体,求这个内接正方体的棱长. (补充平行线分线段成比例定理)5. 小结:学习了柱、锥、台、球的定义、表示;性质;分类.三、巩固练习:1. 练习:书P8 A14.2. 已知长方体的长、宽、高之比为4312,对角线长为26cm, 则长、宽、高分别为多少?3. 棱台的上、下底面积分别是25和81,高为4,求截得这棱台的原棱锥的高4. 若棱长均相等的三棱锥叫正四面体,求棱长为a的正四面体的高.

    相关教案

    人教版新课标A必修2第一章 空间几何体综合与测试教案:

    这是一份人教版新课标A必修2第一章 空间几何体综合与测试教案,共2页。教案主要包含了教学目标,教学重点,教学用具,教学思路,归纳整理,布置作业等内容,欢迎下载使用。

    高中数学人教版新课标A必修21.1 空间几何体的结构教案设计:

    这是一份高中数学人教版新课标A必修21.1 空间几何体的结构教案设计,共2页。教案主要包含了复习准备,讲授新课,巩固练习等内容,欢迎下载使用。

    人教版新课标A必修21.1 空间几何体的结构教案及反思:

    这是一份人教版新课标A必修21.1 空间几何体的结构教案及反思,共3页。教案主要包含了教学目标,教学重点,教学用具,教学思路,归纳整理,布置作业等内容,欢迎下载使用。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map