高中数学:1.2.2《函数的表达法》函数的几种表示方法 教学案(新人教A版必修1)
展开1.2.2 函数的表示方法
第一课时 函数的几种表示方法
【教学目标】
1.掌握函数的三种主要表示方法
2.能选择恰当的方法表示具体问题中的函数关系
3.会画简单函数的图像
【教学重难点】
教学重难点:图像法、列表法、解析法表示函数
【教学过程】
一、复习引入:
1.函数的定义是什么?函数的图象的定义是什么?
2.在中学数学中,画函数图象的基本方法是什么?
3.用描点法画函数图象,怎样避免描点前盲目列表计算?怎样做到描最少的点却能显示出图象的主要特征?
二、讲解新课:函数的表示方法
表示函数的方法,常用的有解析法、列表法和图象法三种.
⑴解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.
例如,s=60,A=,S=2,y=a+bx+c(a0),y=(x2)等等都是用解析式表示函数关系的.
优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数.
⑵列表法:就是列出表格来表示两个变量的函数关系.
例如,学生的身高 单位:厘米
学号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
身高 | 125 | 135 | 140 | 156 | 138 | 172 | 167 | 158 | 169 |
数学用表中的平方表、平方根表、三角函数表,银行里的利息表,列车时刻表等等都是用列表法来表示函数关系的.公共汽车上的票价表
优点:不需要计算就可以直接看出与自变量的值相对应的函数值.
⑶图象法:就是用函数图象表示两个变量之间的关系.
例如,气象台应用自动记录器描绘温度随时间变化的曲线,课本中我国人口出生率变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的.
优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质.
三、例题讲解
例1某种笔记本每个5元,买 x{1,2,3,4}个笔记本的钱数记为y(元),试写出以x为自变量的函数y的解析式,并画出这个函数的图像
解:这个函数的定义域集合是{1,2,3,4},函数的解析式为
y=5x,x{1,2,3,4}.
它的图象由4个孤立点A (1, 5) B (2, 10) C (3, 15) D (4, 20)组成,如图所示
变式练习1 设 求f[g(x)]。
解: ∴
∴
∴
例2作出函数的图象
列表描点:
变式练习2 画出函数y=∣x∣与函数y=∣x-2∣的图象
四、小结 本节课学习了以下内容:函数的表示方法及图像的作法
【板书设计】
一、 函数的表示方法
二、 典型例题
例1: 例2:
小结:
【作业布置】
课本第56习题2.2:1,2,3,4
1.2.2 函数的表示方法
第一课时 函数的几种表示方法
一 、 预习目标
通过预习理解函数的表示
二 、预习内容
1.列表法:通过列出 与对应 的表来表示 的方法叫做列表法
2.图象法:以 为横坐标,对应的 为纵坐标的点 的集合,叫做函数y=f(x)的图象,这种用“图形”表示函数的方法叫做图象法.
3.解析法(公式法):用 来表达函数y=f(x)(xA)中的f(x),这种表达函数的方法叫解析法,也称公式法。
4.分段函数:在函数的定义域内,对于自变量x的不同取值区间,有着 ,这样的函数通常叫做 。
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 | 疑惑内容 |
|
|
|
|
|
|
课内探究学案
一 、学习目标
1.掌握函数的三种主要表示方法
2.能选择恰当的方法表示具体问题中的函数关系
3.会画简单函数的图像
学习重难点:图像法、列表法、解析法表示函数
二 、 学习过程
表示函数的方法,常用的有解析法、列表法和图象法三种.
⑴解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.
例如,s=60,A=,S=2,y=a+bx+c(a0),y=(x2)等等都是用解析式表示函数关系的.
优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数.
⑵列表法:就是列出表格来表示两个变量的函数关系.
例如,学生的身高 单位:厘米
学号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
身高 | 125 | 135 | 140 | 156 | 138 | 172 | 167 | 158 | 169 |
数学用表中的平方表、平方根表、三角函数表,银行里的利息表,列车时刻表等等都是用列表法来表示函数关系的.公共汽车上的票价表
优点:不需要计算就可以直接看出与自变量的值相对应的函数值.
⑶图象法:就是用函数图象表示两个变量之间的关系.
例如,气象台应用自动记录器描绘温度随时间变化的曲线,课本中我国人口出生率变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的.
优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质.
三、例题讲解
例1某种笔记本每个5元,买 x{1,2,3,4}个笔记本的钱数记为y(元),试写出以x为自变量的函数y的解析式,并画出这个函数的图像
变式练习1 设 求f[g(x)]。
例2作出函数的图象
变式练习2 画出函数y=∣x∣与函数y=∣x-2∣的图象
三 、当堂检测
课本第56页练习1,2,3
课后练习与提高
1.在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线y=f(x)(实线表示),另一种是平均价格曲线y=g(x)(虚线表示)〔如f(2)=3是指开始买卖后两个小时的即时价格为3元;g(2)=3表示两个小时内的平均价格为3元〕,下图给出的四个图象中,其中可能正确的是( )
2.函数f(x+1)为偶函数,且x<1时,f(x)=x2+1,则x>1时,f(x)的解析式为( )
A.f(x)=x2-4x+4 B.f(x)=x2-4x+5
C.f(x)=x2-4x-5 D.f(x)=x2+4x+5
3.函数的图象的大致形状是( )
4.如图,设点A是单位圆上的一定点,动点P从点A出发在圆上按逆时针方向旋转一周,点P所旋转过的的长为l,弦AP的长为d,则函数d=f(l)的图象大致是( )
5.用一根长为12m的铝合金条做成一个“目”字形窗户的框架(不计损耗),要使这个窗户通过的阳光最充足,则框架的长与宽应分别为_________.
6.已知定义域为R的函数f(x)满足f[f(x)-x2+x]=f(x)-x2+x.
(1)若f(2)=3,求f(1);又若f(0)=a,求f(a);
(2)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析表达式.
解答:
1 解析:解答该题要注意平均变化率是一个累积平均效应,因此可以得到正确选项为C.
答案:C
2 解析:因为f(x+1)为偶函数,
所以f(-x+1)=f(x+1),即f(x)=f(2-x).
当x>1时,2-x<1,此时,f(2-x)=(2-x)2+1,即f(x)=x2-4x+5.
答案:B
3 解析:该函数为一个分段函数,即为当x>0时函数f(x)=ax的图象单调递增;当x<0时,函数f(x)=-ax的图象单调递减.故选B.
答案:B
4 解析:函数在[0,π]上的解析式为
.
在[π,2π]上的解析式为,
故函数d=f(l)的解析式为,l∈[0,2π].
答案:C
5 解析:由题意可知,即是求窗户面积最大时的长与宽,设长为xm,则宽为()m,
∴
解得当x=3时,.
∴长为3m,宽为1.5m.
答案:3m,1.5m
6 解:(1)因为对任意x∈R,
有f[f(x)-x2+x]=f(x)-x2+x,
所以f[f(2)-22+2]=f(2)-22+2.
又由f(2)=3,得f(3-22+2)=3-22+2,即f(1)=1.
若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a
(2)因为对任意x∈R,有f[f(x)-x2+x]=f(x)-x2+x,
又因为有且只有一个实数x0,使得f(x0)=x0,
所以对任意x∈R,有f(x)-x2+x=x0.
在上式中令x=x0,有f(x0)-x02+x0=x0,
又因为f(x0)=x0,所以x0-x02=0.
故x0=0或x0=1.
若x0=0,则f(x)-x2+x=0,即f(x)=x2-x.
但方程x2-x=x有两个不同实根,与题设条件矛盾,
故x0≠0.
若x0=1,则有f(x)-x2+x=1,即f(x)=x2-x+1.
易验证该函数满足题设条件.
综上,所求函数为f(x)=x2-x+1(x∈R).