人教版新课标A必修24.1 圆的方程学案设计
展开圆的标准方程
一、教学目标
(一)知识教学点
使学生掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程.
(二)能力训练点
通过圆的标准方程的推导,培养学生利用求曲线的方程的一般步骤解决一些实际问题的能力.
(三)学科渗透点
圆基于初中的知识,同时又是初中的知识的加深,使学生懂得知识的连续性;通过圆的标准方程,可解决一些如圆拱桥的实际问题,说明理论既来源于实践,又服务于实践,可以适时进行辩证唯物主义思想教育.
二、教材分析
1.重点:(1)圆的标准方程的推导步骤;(2)根据具体条件正确写出圆的标准方程.
(解决办法:(1)通过设问,消除难点,并详细讲解;(2)多多练习、讲解.)
2.难点:运用圆的标准方程解决一些简单的实际问题.
(解决办法:使学生掌握分析这类问题的方法是先弄清题意,再建立适当的直角坐标系,使圆的标准方程形式简单,最后解决实际问题.)
三、活动设计
问答、讲授、设问、演板、重点讲解、归纳小结、阅读.
四、教学过程
(一)复习提问
前面,大家学习了圆的概念,哪一位同学来回答?
问题1:具有什么性质的点的轨迹称为圆?
平面内与一定点距离等于定长的点的轨迹称为圆(教师在黑板上画一个圆).
问题2:图2-9中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?
圆心C是定点,圆周上的点M是动点,它们到圆心距离等于定长|MC|=r,圆心和半径分别确定了圆的位置和大小.
问题3:求曲线的方程的一般步骤是什么?其中哪几个步骤必不可少?
求曲线方程的一般步骤为:
(1)建立适当的直角坐标系,用(x,y)表示曲线上任意点M的坐标,简称建系设点;图2-9
(2)写出适合条件P的点M的集合P={M|P(M)|},简称写点集;
(3)用坐标表示条件P(M),列出方程f(x,y)=0,简称列方程;
(4)化方程f(x,y)=0为最简形式,简称化简方程;
(5)证明化简后的方程就是所求曲线的方程,简称证明.
其中步骤(1)(3)(4)必不可少.
下面我们用求曲线方程的一般步骤来建立圆的标准方程.
(二)建立圆的标准方程
1.建系设点
由学生在黑板上画出直角坐标系,并问有无不同建立坐标系的方法.教师指出:这两种建立坐标系的方法都对,原点在圆心这是特殊情况,现在仅就一般情况推导.因为C是定点,可设C(a,b)、半径r,且设圆上任一点M坐标为(x,y).
2.写点集
根据定义,圆就是集合P={M||MC|=r}.
3.列方程
由两点间的距离公式得:
4.化简方程
将上式两边平方得:
(x-a)2+(y-b)2=r2.
(1)
方程(1)就是圆心是C(a,b)、半径是r的圆的方程.我们把它叫做圆的标准方程.
这时,请大家思考下面一个问题.
问题5:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?
这是二元二次方程,展开后没有xy项,括号内变数x,y的系数都是1.点(a,b)、r分别表示圆心的坐标和圆的半径.当圆心在原点即C(0,0)时,方程为 x2+y2=r2.
教师指出:圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要a,b,r三个量确定了且r>0,圆的方程就给定了.这就是说要确定圆的方程,必须具备三个独立的条件.注意,确定a、b、r,可以根据条件,利用待定系数法来解决.
(三)圆的标准方程的应用
例1 写出下列各圆的方程:(请四位同学演板)
(1)圆心在原点,半径是3;
(3)经过点P(5,1),圆心在点C(8,-3);
(4)圆心在点C(1,3),并且和直线3x-4y-7=0相切.
教师纠错,分别给出正确答案:(1)x2+y2=9;(2)(x-3)2+(y-4)2=5;
指出:要求能够用圆心坐标、半径长熟练地写出圆的标准方程.
例2 说出下列圆的圆心和半径:(学生回答)
(1)(x-3)2+(y-2)2=5;
(2)(x+4)2+(y+3)2=7;
(3)(x+2)2+ y2=4
教师指出:已知圆的标准方程,要能够熟练地求出它的圆心和半径.
例3 (1)已知两点P1(4,9)和P2(6,3),求以P1P2为直径的圆的方程;(2)试判断点M(6,9)、N(3,3)、Q(5,3)是在圆上,在圆内,还是在圆外?
解(1):
分析一:
从确定圆的条件考虑,需要求圆心和半径,可用待定系数解决.
解法一:(学生口答)
设圆心C(a,b)、半径r,则由C为P1P2的中点得:
又由两点间的距离公式得:
∴所求圆的方程为:
(x-5)2+(y-6)2=10
分析二:
从图形上动点P性质考虑,用求曲线方程的一般方法解决.
解法二:(给出板书)
∵直径上的四周角是直角,
∴对于圆上任一点P(x,y),有PP1⊥PP2.
化简得:
x2+y2-10x-12y+51=0.
即(x-5)2+(y-6)2=10为所求圆的方程.
解(2):(学生阅读课本)
分别计算点到圆心的距离:
因此,点M在圆上,点N在圆外,点Q在圆内.
这时,教师小结本题:
1.求圆的方程的方法
(1)待定系数法,确定a,b,r;
(2)轨迹法,求曲线方程的一般方法.
2.点与圆的位置关系
设点到圆心的距离为d,圆半径为r:
(1)点在圆上 d=r;
(2)点在圆外 d>r;
(3)点在圆内 d<r.
3.以A(x1,y1)、B(x2,y2)为直径端点的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0(证明留作作业)
例4 图2-10是某圆拱桥的—孔圆拱的示意图.该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱A2P2的长度(精确到0.01m).
此例由学生阅读课本,教师巡视并做如下提示:
(1)先要建立适当直角坐标系,使圆的标准方程形式简单,便于计算;
(2)用待定系数法求圆的标准方程;
(3)要注意P2的横坐标x=-2<0,纵坐标y>0,所以A2P2的长度只有一解.
(四)本课小结
1.圆的方程的推导步骤;
2.圆的方程的特点:点(a,b)、r分别表示圆心坐标和圆的半径;
3.求圆的方程的两种方法:(1)待定系数法;(2)轨迹法.
五、布置作业
1.求下列条件所决定的圆的方程:
(1)圆心为 C(3,-5),并且与直线x-7y+2=0相切;
(2)过点A(3,2),圆心在直线y=2x上,且与直线y=2x+5相切.
2.已知:一个圆的直径端点是A(x1,y1)、B(x2,y2).
证明:圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.
3.一个等腰三角形底边上的高等于5,底边两端点的坐标是(-4,0)和(4,0),求它的外接圆的方程.
4.赵州桥的跨度是37.4m,圆拱高约为7.2m,求这座圆拱桥的拱圆的方程.
作业答案:
1.(1)(x-3)2+(y+5)2= 32
2.因为直径的端点为A(x1,y1)、B(x2,y2),则圆心和半径分别为
所以圆的方程为
化简得:x2-(x1+x2)x+x1x2+y2-(y1+y2)y+y1y2=0
即(x-x1)(x-x2)+(y-y1)(y-y2)=0
4.如图2-11建立坐标系,得拱圆的方程:
x2+(y+27.88)2=27.882(-7.2≤y≤0)
六、板书设计
人教版新课标A必修24.1 圆的方程学案: 这是一份人教版新课标A必修24.1 圆的方程学案,共4页。
数学必修41.1 任意角和弧度制学案设计: 这是一份数学必修41.1 任意角和弧度制学案设计,共2页。学案主要包含了复习,由公式,练习,作业等内容,欢迎下载使用。
高中数学人教版新课标B必修41.1.2弧度制和弧度制与角度制的换算导学案: 这是一份高中数学人教版新课标B必修41.1.2弧度制和弧度制与角度制的换算导学案,共2页。学案主要包含了复习,由公式,练习,作业等内容,欢迎下载使用。