高中数学人教版新课标A必修22.3 直线、平面垂直的判定及其性质导学案及答案
展开2.3.2平面与平面垂直的判定
一、学习目标:
知识与技能:正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;掌握两个平面垂直的判定定理及其简单的应用;
过程与方法:培养几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论。
情感态度与价值观:亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣,同时培养从“感性认识”到“理性认识”过程中获取新知的能力。
二、学习重、难点
学习重点: 平面与平面垂直的判定;
学习难点: 如何度量二面角的大小。
三、使用说明及学法指导:
1、限定45分钟完成,注意逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。
2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆。3、对小班学生要求完成全部问题,实验班完成80%以上,平行班完成60%以上.4、A级是自主学习,B级是合作探究,C级是提升
四、知识链接:
直线与平面垂直的定义:
直线与平面垂直的判定定理:
直线与平面所成的角:
五、学习过程:自主探究
一、二面角的定义
问题1:
半平面:
二面角:
二面角的表示:
二面角的平面角:
二面角的平面角∠AOB的特点:
(1)角的顶点在棱上;(2)角的两边分别在二面角的两个面上;(3)角的两边分别和棱垂直。
特别指出:
①二面角的大小是用平面角来度量的,其范围是[0,);
②二面角的平面角的大小与棱上点(角的顶点)的选择无关,是有二面角的两个面的位置惟一确定;
③二面角的平面角所在的平面和棱是垂直的
直二面角:
规律:求异面直线所成的角,直线与平面所成的角,平面与平面所成的角最终都转化为线与线相交构成的角。
例1:如图四面体ABCD的棱BD长为2,其余各棱长均为,求二面角A-BD-C的大小。
二、两个平面互相垂直
两个平面互相垂直:
两个互相垂直的平面画法:
平面与β垂直,记作:
定理:一个平面过另一个平面的垂线,则这两个平面垂直。
符号语言:
图形语言:
思想:线面垂直面面垂直
判断对错:
1.如果平面内有一条直线垂直于平面β内的一条直线,则⊥β.( )
2.如果平面内有一条直线垂直于平面β内的两条直线,则⊥β.( )
3.如果平面内的一条直线垂直于平面β内的两条相交直线, 则⊥β.( )
例2、已知直线PA垂直于圆O所在的平面,A为垂足,AB为圆O的直径,C是圆周上异于A、B的一点。
探究1、四面体P-ABC的四个面的形状是怎样的?
探究2、有哪些直线和平面垂直?
探究3、有哪些平面相互垂直?
求证:平面PAC平面PBC
关键:找与平面垂直的线.
例3:如图P为ΔABC所在平面外一点,PA⊥平面ABC,∠ABC=90°,AE⊥PB于E,AF⊥PC于F,求证:⑴平面PAB⊥平面PBC;⑵平面AEF⊥平面PBC;⑶平面AEF⊥平面PAC。
六、达标检测
1.过平面外两点且垂直于平面的平面 ( )
有且只有一个 不是一个便是两个
有且仅有两个 一个或无数个
2.若平面平面,直线,,,则 ( )
且
与中至少有一个成立
3.对于直线和平面,的一个充分条件是 ( )
,
4.设表示三条直线,表示三个平面,给出下列四个命题:
①若,则;②若是在内的射影,,则;
③若,则; ④若,则. 其中真命题是( )
①② ②③ ①③ ③④
5:已知平面α∩平面β=直线,α、β垂直于平面γ,又平行于直线b,求证:(1) ⊥γ;(2)b⊥γ.
七、总结评价:
本节课我们讲了二面角的概念,二面角平面角的定义。两个平面垂直的定义、画法及判定方法. 判定方法有两种,一是利用定义二是利用判定定理,如何应用两个平面垂直的判定定理,把面面垂直的问题转化为线面垂直的问题是本节课学习的关键。
学后反思、自查自纠:
要求:1、静心思考,查缺补漏,找出在基础、能力方面的漏洞。
2、不讨论,独立思考,将错题重新做一遍。可查阅课本和相关资料。
【金玉良言】快乐心中徜徉,自由随风飘扬,身体力行健康,奋进热情高涨,拼搏成就梦想.
高中数学人教A版 (2019)必修 第二册第八章 立体几何初步8.6 空间直线、平面的垂直第1课时学案: 这是一份高中数学人教A版 (2019)必修 第二册第八章 立体几何初步8.6 空间直线、平面的垂直第1课时学案,共7页。学案主要包含了探索新知等内容,欢迎下载使用。
高中数学人教版新课标A必修22.2 直线、平面平行的判定及其性质学案设计: 这是一份高中数学人教版新课标A必修22.2 直线、平面平行的判定及其性质学案设计,共4页。学案主要包含了学习目标,学习重,使用说明及学法指导,知识链接,学习过程,达标训练,小结与反思等内容,欢迎下载使用。
人教版新课标A必修22.2 直线、平面平行的判定及其性质学案: 这是一份人教版新课标A必修22.2 直线、平面平行的判定及其性质学案,共3页。学案主要包含了学习目标,学习重,学法指导及要求,知识链接,学习过程,达标检测,小结与反思等内容,欢迎下载使用。