人教A版 (2019)必修 第二册6.2 平面向量的运算习题
展开[合格基础练]
一、选择题
1.在平行四边形ABCD中,下列结论错误的是( )
A.eq \(AB,\s\up14(→))-eq \(DC,\s\up14(→))=0 B.eq \(AD,\s\up14(→))-eq \(BA,\s\up14(→))=eq \(AC,\s\up14(→))
C.eq \(AB,\s\up14(→))-eq \(AD,\s\up14(→))=eq \(BD,\s\up14(→)) D.eq \(AD,\s\up14(→))+eq \(CB,\s\up14(→))=0
C [因为四边形ABCD是平行四边形,
所以eq \(AB,\s\up14(→))=eq \(DC,\s\up14(→)),eq \(AB,\s\up14(→))-eq \(DC,\s\up14(→))=0,
eq \(AD,\s\up14(→))-eq \(BA,\s\up14(→))=eq \(AD,\s\up14(→))+eq \(AB,\s\up14(→))=eq \(AC,\s\up14(→)),
eq \(AB,\s\up14(→))-eq \(AD,\s\up14(→))=eq \(DB,\s\up14(→)),
eq \(AD,\s\up14(→))+eq \(CB,\s\up14(→))=eq \(AD,\s\up14(→))+eq \(DA,\s\up14(→))=0,故只有C错误.]
2.在△ABC中,eq \(BC,\s\up14(→))=a,eq \(CA,\s\up14(→))=b,则eq \(AB,\s\up14(→))等于( )
A.a+b B.-a+(-b)
C.a-b D.b-a
B [如图,∵eq \(BA,\s\up14(→))=eq \(BC,\s\up14(→))+eq \(CA,\s\up14(→))=a+b,
∴eq \(AB,\s\up14(→))=-eq \(BA,\s\up14(→))=-a-b.]
3.已知非零向量a与b同向,则a-b( )
A.必定与a同向
B.必定与b同向
C.必定与a是平行向量
D.与b不可能是平行向量
C [a-b必定与a是平行向量.]
4.下列各式中不能化简为eq \(AD,\s\up14(→))的是( )
A.(eq \(AB,\s\up14(→))-eq \(DC,\s\up14(→)))-eq \(CB,\s\up14(→))
B.eq \(AD,\s\up14(→))-(eq \(CD,\s\up14(→))+eq \(DC,\s\up14(→)))
C.-(eq \(CB,\s\up14(→))+eq \(MC,\s\up14(→)))-(eq \(DA,\s\up14(→))+eq \(BM,\s\up14(→)))
D.-eq \(BM,\s\up14(→))-eq \(DA,\s\up14(→))+eq \(MB,\s\up14(→))
D [选项A中,(eq \(AB,\s\up14(→))-eq \(DC,\s\up14(→)))-eq \(CB,\s\up14(→))=eq \(AB,\s\up14(→))+eq \(CD,\s\up14(→))+eq \(BC,\s\up14(→))=eq \(AB,\s\up14(→))+eq \(BC,\s\up14(→))+eq \(CD,\s\up14(→))=eq \(AD,\s\up14(→));选项B中,eq \(AD,\s\up14(→))-(eq \(CD,\s\up14(→))+eq \(DC,\s\up14(→)))=eq \(AD,\s\up14(→))-0=eq \(AD,\s\up14(→));选项C中,-(eq \(CB,\s\up14(→))+eq \(MC,\s\up14(→)))-(eq \(DA,\s\up14(→))+eq \(BM,\s\up14(→)))=-eq \(CB,\s\up14(→))-eq \(MC,\s\up14(→))-eq \(DA,\s\up14(→))-eq \(BM,\s\up14(→))=eq \(BC,\s\up14(→))+eq \(CM,\s\up14(→))+eq \(AD,\s\up14(→))+eq \(MB,\s\up14(→))=(eq \(MB,\s\up14(→))+eq \(BC,\s\up14(→))+eq \(CM,\s\up14(→)))+eq \(AD,\s\up14(→))=eq \(AD,\s\up14(→)).]
5.若a,b为非零向量,则下列命题错误的是( )
A.若|a|+|b|=|a+b|,则a与b方向相同
B.若|a|+|b|=|a-b|,则a与b方向相反
C.若|a|+|b|=|a-b|,则|a|=|b|
D.若||a|-|b||=|a-b|,则a与b方向相同
C [当a,b方向相同时,有|a|+|b|=|a+b|,||a|-|b||=|a-b|;当a,b方向相反时,有|a|+|b|=|a-b|,||a|-|b||=|a+b|,故A,B,D均正确.]
二、填空题
6.如图,在△ABC中,若D是边BC的中点,E是边AB上一点,则eq \(BE,\s\up14(→))-eq \(DC,\s\up14(→))+eq \(ED,\s\up14(→))=________.
0 [因为D是边BC的中点,
所以eq \(BE,\s\up14(→))-eq \(DC,\s\up14(→))+eq \(ED,\s\up14(→))
=eq \(BE,\s\up14(→))+eq \(ED,\s\up14(→))-eq \(DC,\s\up14(→))
=eq \(BD,\s\up14(→))-eq \(DC,\s\up14(→))=0.]
7.如图所示,已知O为平行四边形ABCD内一点,eq \(OA,\s\up14(→))=a,eq \(OB,\s\up14(→))=b,eq \(OC,\s\up14(→))=c,则eq \(OD,\s\up14(→))=________.(用a,b,c表示)
a-b+c [由题意,在平行四边形ABCD中,因为eq \(OA,\s\up14(→))=a,eq \(OB,\s\up14(→))=b,所以eq \(BA,\s\up14(→))=eq \(OA,\s\up14(→))-eq \(OB,\s\up14(→))=a-b,
所以eq \(CD,\s\up14(→))=eq \(BA,\s\up14(→))=a-b,
所以eq \(OD,\s\up14(→))=eq \(OC,\s\up14(→))+eq \(CD,\s\up14(→))=a-b+c.]
8.已知向量|a|=2,|b|=4,且a,b不是方向相反的向量,则|a-b|的取值范围是________.
[2,6) [根据题意得||a|-|b||≤|a-b|<|a|+|b|,即2≤|a-b|<6.]
三、解答题
9.如图,O为△ABC内一点,eq \(OA,\s\up14(→))=a,eq \(OB,\s\up14(→))=b,eq \(OC,\s\up14(→))=c.求作:
(1)b+c-a;(2)a-b-c.
[解] (1)以eq \(OB,\s\up14(→)),eq \(OC,\s\up14(→))为邻边作▱OBDC,连接OD,AD,则eq \(OD,\s\up14(→))=eq \(OB,\s\up14(→))+eq \(OC,\s\up14(→))=b+c,所以b+c-a=eq \(OD,\s\up14(→))-eq \(OA,\s\up14(→))=eq \(AD,\s\up14(→)),如图所示.
(2)由a-b-c=a-(b+c),如图,作▱OBEC,连接OE,则eq \(OE,\s\up14(→))=eq \(OB,\s\up14(→))+eq \(OC,\s\up14(→))=b+c,
连接AE,则eq \(EA,\s\up14(→))=a-(b+c)=a-b-c.
10.已知△OAB中,eq \(OA,\s\up14(→))=a,eq \(OB,\s\up14(→))=b,满足|a|=|b|=|a-b|=2,求|a+b|与△OAB的面积.
[解] 由已知得|eq \(OA,\s\up14(→))|=|eq \(OB,\s\up14(→))|,以eq \(OA,\s\up14(→)),eq \(OB,\s\up14(→))为邻边作平行四边形OACB,则可知其为菱形,且eq \(OC,\s\up14(→))=a+b,eq \(BA,\s\up14(→))=a-b,
由于|a|=|b|=|a-b|,则OA=OB=BA,
∴△OAB为正三角形,
∴|a+b|=|eq \(OC,\s\up14(→))|=2×eq \r(3)=2eq \r(3),
S△OAB=eq \f(1,2)×2×eq \r(3)=eq \r(3).
[等级过关练]
1.设点M是线段BC的中点,点A在直线BC外,|eq \(BC,\s\up14(→))|2=16,|eq \(AB,\s\up14(→))+eq \(AC,\s\up14(→))|=|eq \(AB,\s\up14(→))-eq \(AC,\s\up14(→))|,则|eq \(AM,\s\up14(→))|=( )
A.8 B.4 C.2 D.1
C [根据|eq \(AB,\s\up14(→))+eq \(AC,\s\up14(→))|=|eq \(AB,\s\up14(→))-eq \(AC,\s\up14(→))|可知,△ABC是以A为直角的直角三角形,∵|eq \(BC,\s\up14(→))|2=16,∴|eq \(BC,\s\up14(→))|=4,又∵M是BC的中点,∴|eq \(AM,\s\up14(→))|=eq \f(1,2)|eq \(BC,\s\up14(→))|=eq \f(1,2)×4=2.]
2.对于菱形ABCD,给出下列各式:
①eq \(AB,\s\up14(→))=eq \(BC,\s\up14(→));②|eq \(AB,\s\up14(→))|=|eq \(BC,\s\up14(→))|;③|eq \(AB,\s\up14(→))-eq \(CD,\s\up14(→))|=|eq \(AD,\s\up14(→))+eq \(BC,\s\up14(→))|;④|eq \(AD,\s\up14(→))+eq \(CD,\s\up14(→))|=|eq \(CD,\s\up14(→))-eq \(CB,\s\up14(→))|.
其中正确的个数为( )
A.1 B.2 C.3 D.4
C [菱形ABCD中,如图,|eq \(AB,\s\up14(→))|=|eq \(BC,\s\up14(→))|,∴②正确.
又|eq \(AB,\s\up14(→))-eq \(CD,\s\up14(→))|=|eq \(AB,\s\up14(→))+eq \(DC,\s\up14(→))|=|eq \(AB,\s\up14(→))+eq \(AB,\s\up14(→))|=2|eq \(AB,\s\up14(→))|,
|eq \(AD,\s\up14(→))+eq \(BC,\s\up14(→))|=|eq \(AD,\s\up14(→))+eq \(AD,\s\up14(→))|=2|eq \(AD,\s\up14(→))|=2|eq \(AB,\s\up14(→))|,
∴③正确;又|eq \(AD,\s\up14(→))+eq \(CD,\s\up14(→))|=|eq \(DA,\s\up14(→))+eq \(DC,\s\up14(→))|=|eq \(DB,\s\up14(→))|,|eq \(CD,\s\up14(→))-eq \(CB,\s\up14(→))|=|eq \(BD,\s\up14(→))|=|eq \(DB,\s\up14(→))|,∴④正确;①肯定不正确,故选C.]
高中数学人教A版 (2019)必修 第二册6.2 平面向量的运算免费同步测试题: 这是一份高中数学人教A版 (2019)必修 第二册<a href="/sx/tb_c4000291_t7/?tag_id=28" target="_blank">6.2 平面向量的运算免费同步测试题</a>,共5页。
高中人教A版 (2019)第六章 平面向量及其应用6.2 平面向量的运算当堂检测题: 这是一份高中人教A版 (2019)第六章 平面向量及其应用6.2 平面向量的运算当堂检测题,共2页。
高中数学人教A版 (2019)必修 第二册6.2 平面向量的运算测试题: 这是一份高中数学人教A版 (2019)必修 第二册6.2 平面向量的运算测试题,共5页。