![专题01 任意角与弧度制【专项训练】-2020-2021学年高一数学下学期期中专项复习(北师大版2019必修第二册)(原卷版)第1页](http://img-preview.51jiaoxi.com/3/3/12526052/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题01 任意角与弧度制【专项训练】-2020-2021学年高一数学下学期期中专项复习(北师大版2019必修第二册)(原卷版)第2页](http://img-preview.51jiaoxi.com/3/3/12526052/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题01 任意角与弧度制【专项训练】-2020-2021学年高一数学下学期期中专项复习(北师大版2019必修第二册)(解析版)第1页](http://img-preview.51jiaoxi.com/3/3/12526052/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题01 任意角与弧度制【专项训练】-2020-2021学年高一数学下学期期中专项复习(北师大版2019必修第二册)(解析版)第2页](http://img-preview.51jiaoxi.com/3/3/12526052/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题01 任意角与弧度制【专项训练】-2020-2021学年高一数学下学期期中专项复习(北师大版2019必修第二册)(解析版)第3页](http://img-preview.51jiaoxi.com/3/3/12526052/1/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
专题01 任意角与弧度制【专项训练】-2020-2021学年高一数学下学期期中专项复习(北师大版2019必修第二册)
展开
这是一份专题01 任意角与弧度制【专项训练】-2020-2021学年高一数学下学期期中专项复习(北师大版2019必修第二册),文件包含专题01任意角与弧度制专项训练-2020-2021学年高一数学下学期期中专项复习北师大版2019必修第二册原卷版doc、专题01任意角与弧度制专项训练-2020-2021学年高一数学下学期期中专项复习北师大版2019必修第二册解析版doc等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
专题01 任意角与弧度制【专项训练】-2020-2021学年高一数学下学期期中专项复习(北师大2019版)一、单选题1.(2021·上海高一专题练习)一个圆心角为的扇形,它的弧长是,则扇形的内切圆(与扇形的弧和半径的相切)的半径等于( )A.2 B.4C. D.2.(2021·上海高一)终边为第一象限和第三象限的平分线的角的集合是( )A. B.C. D.3.(2021·安徽安庆市·高一期末)半径为2,圆心角为的扇形所夹的弓形(如图所示的阴影部分)面积为( )A. B.C. D.4.(2021·甘肃省永昌县第一高级中学高一期末)如果已知,,那么角的终边在( )A.第一或第二象限 B.第一或第三象限C.第二或第四象限 D.第四或第三象限5.(2021·福建三明市·高一期末)下列各式中正确的是( )A. B. C. D.6.(2021·广西玉林市·高一期末)已知为第二象限角,则为( )A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角7.(2021·湖南衡阳市八中高一期末)中国传统扇文化有着极其深厚的底蕴.一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为,圆面中剩余部分的面积为,当与的比值为时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A. B. C. D.8.(2021·江苏省锡山高级中学高一期末)若角顶点在原点,始边在轴正半轴上,终边一点的坐标为,则角为( )角.A.第一象限 B.第二象限 C.第三象限 D.第四象限9.(2020·山东济南市·高一期末)“是锐角”是“是第一象限角”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件10.(2021·北京高三期末)斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形()中作正方形,以为圆心,长为半径作圆弧;然后在矩形中作正方形,以为圆心,长为半径作圆弧;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧,,的长度分别为,对于以下四个命题:①;②;③;④.其中正确的是( )A.①② B.①④ C.②③ D.③④二、多选题11.(2020·江苏省包场高级中学高一月考)关于角度,下列说法正确的是( )A.时钟经过两个小时,时针转过的角度是B.钝角大于锐角C.三角形的内角必是第一或第二象限角D.若是第二象限角,则是第一或第三象限角12.(2021·湖北恩施土家族苗族自治州·高一期末)下列命题为假命题的是( )A.小于的角都是锐角; B.钝角一定是第二象限角;C.第二象限角大于第一象限角; D.若,则是第二或第三象限的角.三、填空题13.(2021·河北石家庄市·石家庄一中高一期末)已知扇形的周长为,面积为,则扇形的圆心角的弧度数为___________.14.(2021·上海高一)某饭店顶层旋转餐厅的半径为20米,该餐厅每分钟旋转弧度,则餐厅边缘一点1小时所转过的弧长是____________米.15.(2021·上海高一专题练习)在内与终边重合的角是___________.16.(2021·北京101中学高一期末)若角与角的终边关于直线对称,则角的终边上的所有角的集合可以写为______四、解答题17.(2020·全国高一课时练习)已知.(1)把写成的形式,并指出它是第几象限角(2)写出与终边相同的角构成的集合,并把中适合不等式的元素写出来.18.(2021·全国高一课时练习)写出角的终边在下列位置时的集合.(1)角α的终边在如图(1)所示的阴影中(包括边界);(2)角α的终边在如图(2)所示的阴影中(包括边界).19.(2021·安徽省泗县第一中学高一开学考试)已知一扇形的圆心角为,半径为,弧长为.(1)已知扇形的周长为,面积是,求扇形的圆心角;(2)若扇形周长为,当扇形的圆心角为多少弧度时,这个扇形的面积最大?20.(2021·浙江高一期末)一只红蚂蚁与一只黑蚂蚁在一个圆(半径为的圆)的圆周上爬动,且两只蚂蚁均从点同时逆时针匀速爬动,红蚂蚁每秒爬过角,黑蚂蚁每秒爬过角(其中).如果两只蚂蚁都在第14秒时回到A点,并且在第2秒时均位于第二象限.(1)求,的值.(2)两只蚂蚁的爬行速度保持不变,若红蚂蚁从点A逆时针匀速爬行,黑蚂蚁同时从点A顺时针匀速爬行,求当它们从点A出发后第一次相遇时,红蚂蚁爬过的距离.21.(2020·沭阳县修远中学高一月考)《九章算术》是我国古代的数学巨著,其中《方田》章给出了“弧田”,“弦”和“矢”的定义,“弧田”(如图阴影部分所示)是由圆弧和弦围成,“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差.(1)当圆心角为,矢为2的弧田,求:弧田(如图阴影部分所示)的面积;(2)已知如图该扇形圆心角是,半径为,若该扇形周长是一定值当为多少弧度时,该扇形面积最大?22.(2020·广东深圳市·高一期末)如图所示,动点、从点出发沿圆周运动,点按逆时针方向每秒钟转弧度,点按顺时针方向每秒钟转弧度.(1)求点、第一次相遇时所用的时间;(2)求相遇点的坐标及点、各自走过的弧长.
相关试卷
这是一份2023高考数学复习专项训练《任意角和弧度制》,共9页。试卷主要包含了、单选题,、填空题,、解答题等内容,欢迎下载使用。
这是一份专题03 正弦、余弦函数图像与性质【专项训练】-2020-2021学年高一数学下学期期中专项复习(北师大版2019必修第二册),文件包含专题03正弦余弦函数图像与性质专项训练-2020-2021学年高一数学下学期期中专项复习北师大版2019必修第二册原卷版doc、专题03正弦余弦函数图像与性质专项训练-2020-2021学年高一数学下学期期中专项复习北师大版2019必修第二册解析版doc等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
这是一份专题02 单位圆与诱导公式【专项训练】-2020-2021学年高一数学下学期期中专项复习(北师大版2019必修第二册),文件包含专题02单位圆与诱导公式专项训练-2020-2021学年高一数学下学期期中专项复习北师大版2019必修第二册原卷版doc、专题02单位圆与诱导公式专项训练-2020-2021学年高一数学下学期期中专项复习北师大版2019必修第二册解析版doc等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)