终身会员
搜索
    上传资料 赚现金

    1.6函数y=Asin(wx+φ)的性质和图像-【课时分层练】2020-2021学年高一数学同步备课系列【中档题】(北师大2019版第二册)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      1.6函数y=Asin(wx+φ)的性质和图像(原卷版)-【课时分层练】2020-2021学年高一数学同步备课系列【中档题】(北师大2019版第二册).docx
    • 解析
      1.6函数y=Asin(wx+φ)的性质和图像(解析版)-【课时分层练】2020-2021学年高一数学同步备课系列【中档题】(北师大2019版第二册).docx
    1.6函数y=Asin(wx+φ)的性质和图像(原卷版)-【课时分层练】2020-2021学年高一数学同步备课系列【中档题】(北师大2019版第二册)第1页
    1.6函数y=Asin(wx+φ)的性质和图像(原卷版)-【课时分层练】2020-2021学年高一数学同步备课系列【中档题】(北师大2019版第二册)第2页
    1.6函数y=Asin(wx+φ)的性质和图像(原卷版)-【课时分层练】2020-2021学年高一数学同步备课系列【中档题】(北师大2019版第二册)第3页
    1.6函数y=Asin(wx+φ)的性质和图像(解析版)-【课时分层练】2020-2021学年高一数学同步备课系列【中档题】(北师大2019版第二册)第1页
    1.6函数y=Asin(wx+φ)的性质和图像(解析版)-【课时分层练】2020-2021学年高一数学同步备课系列【中档题】(北师大2019版第二册)第2页
    1.6函数y=Asin(wx+φ)的性质和图像(解析版)-【课时分层练】2020-2021学年高一数学同步备课系列【中档题】(北师大2019版第二册)第3页
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    1.6函数y=Asin(wx+φ)的性质和图像-【课时分层练】2020-2021学年高一数学同步备课系列【中档题】(北师大2019版第二册)

    展开

    这是一份1.6函数y=Asin(wx+φ)的性质和图像-【课时分层练】2020-2021学年高一数学同步备课系列【中档题】(北师大2019版第二册),文件包含16函数yAsinwx+φ的性质和图像原卷版-课时分层练2020-2021学年高一数学同步备课系列中档题北师大2019版第二册docx、16函数yAsinwx+φ的性质和图像解析版-课时分层练2020-2021学年高一数学同步备课系列中档题北师大2019版第二册docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。


    1.6函数的性质和图像【课时分层练】

    2020-2021学年高一数学同步备课系列【中档题】

    一、单选题

    1.已知函数为常数)为奇函数,那么  

    A B C D

    【答案】A

    【分析】

    根据奇函数定义,代入即可求得的值.

    【详解】

    因为函数为常数)为奇函数

    所以,代入

    所以选A

    【点睛】

    本题考查了奇函数的应用及三角函数的求值,属于基础题.

    2.函数的部分图象如图所示, 为了得到这个函数的图象,只要将的图象上所有的点 ( )

    A.向右平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变

    B.向右平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变

    C.向右平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变

    D.向右平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变

    【答案】A

    【解析】

    试题分析:由得:.所以,故将的图象上所有的点向右平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变便可得的图象.

    考点:三角函数的图象及其变换.

    3.函数的部分图像如图所示,   

    A     B     C        D

    【答案】B

    【分析】

    根据图像可求得,再代入最大值点,即可求得结果.

    【详解】

    因为,所以.显然,,所以,

    因为|φ|,因此,

    故选:B.

    【点睛】

    本题考查根据三角函数图像求解析式,考查学生的看图分析能力,注意求φ时代入最值点求解,属基础题.

    4.为了得到的图象,可以将的图象(   

    A.向右平移个单位 B.向左平移个单位

    C.向右平移个单位 D.向左平移个单位

    【答案】D

    【分析】

    由题意利用诱导公式、函数的图象变换规律,得出结论.

    【详解】

    为了得到函数的图象,可以将函数的图象向左平移个单位.

    故选:D

    【点睛】

    本题主要考查诱导公式、函数的图象变换规律,属于基础题.

    5.在区间(02)内,使sinxcosx成立的x的取值范围是

    A(,)∪(,)      B(,) C(,)∪(,)    D(,)

    【答案】D

    【解析】

    6.已知函数的最小正周期为,将的图象向右移个单位长度,所得图象关于原点对称,则的一个值是(   

    A B C D

    【答案】D

    【分析】

    由函数的周期求得ω2,再根据函数yAsinωx)的图象变换规律,可得所得函数ysin2x2) 它为奇函数,故有2kπkz

    结合所给的选项可得的值.

    【详解】

    由题意可得 π∴ω2.把函数yfx)的图象向右平移个单位长度(0),

    所得图象对应的函数解析式为ysin[2x]sin2x2).

    再由它的图象关于原点对称,可得它为奇函数,故有2kπkz

    ,

    结合所给的选项,故可以等于

    故选:D

    【点睛】

    本题主要考查函数yAsinωx)的图象变换规律,正弦函数的对称性,属于中档题.

    7.将函数的图象向左平移个单位,再把所有点的横坐标伸长到原来的倍,得到函数的图象,则下列关于函数的说法错误的是(   

    A.最小正周期为B.图象关于直线对称

    C.图象关于点对称D.图象在上单调递减

    【答案】C

    【分析】

    根据正弦型函数图象变换性质写出相应变换后的解析式,最后利用正弦型函数的性质逐一判断即可.

    【详解】

    函数的图象向左平移个单位,得到的图象上所有点的横坐标伸长到原来的倍,得到.

    A:最小正周期为,所以本选项正确;

    B:当时,,所以本选项正确;

    C:当时,,所以本选项不正确;

    D:当 时,图象在上单调递减,所以本选项正确.

    故选:C.

    【点睛】

    本题考查了正弦型函数图象的变换,考查了正弦型函数的性质,属于基础题.

    8.将函数的图象向右平移个最小正周期后,所得图象对应的函数解析式为(   

    A B

    C D

    【答案】B

    【分析】

    先求得的最小正周期,然后根据三角函数图象变换的知识求得变换后的函数解析式.

    【详解】

    因为函数的最小正周期为,所以将的图象向右平移个最小正周期即,所得图象对应的函数解析式为.

    故选:B

    【点睛】

    本小题主要考查三角函数图象变换,属于基础题.

    9.函数,直线图象相邻两个交点的横坐标之差的绝对值恒等于,且,则函数的解析式为(   

    A B

    C D

    【答案】B

    【分析】

    先由直线图象相邻两个交点的横坐标之差的绝对值恒等于,得到,求出,再由求出,从而可求出结果.

    【详解】

    直线图象相邻两个交点的横坐标之差的绝对值恒等于

    ,因此

    ,所以,因为,解得

    故选B

    【点睛】

    本题主要考查由三角函数的性质求函数解析式的问题,熟记正弦函数的图像与性质即可,属于常考题型.

    10.已知函数,其图像相邻两条对称轴之间的距离为,且函数是偶函数,则下列判断正确的是(   

    A.函数的最小正周期为B.函数在区间上单调递增

    C.函数的图象关于直线对称D.函数的图象关于点对称

    【答案】B

    【解析】

    图像相邻两条对称轴之间的距离为,即三角函数的周期为,所以,是偶函数,,,,解得,所以.A,最小正周期,错误;B, ,解得单调递增区间为,k=1时成立,故正确;;C, ,解得对称轴是,错误;D, ,解得对称中心是,错误;综上所述,应选B.

    二、多选题

    11.已知函数的最小正周期为,将该函数的图象向左平移个单位后,得到的图象对应的函数为偶函数,则下列说法正确的是(   

    A

    B.函数的图象关于直线对称

    C.函数的图象关于点对称

    D.函数的图象关于直线对称

    【答案】ABC

    【分析】

    利用正弦函数的周期性以及图像的对称性,求出函数的解析式,再根据函数的图像变化规律、正弦函数的图像的对称性,得出结论.

    【详解】

    函数的最小正周期为,故

    将该函数的图象向左平移个单位后,得到的图像,

    根据得到的图象对应的函数为偶函数,可得

    对于A,故A正确;

    对于B,当 时,则,故B正确;

    对于C,故C正确;

    对于D,故D错误;

    故选:ABC

    【点睛】

    本题考查了三角函数的平移变换以及三角函数的性质,解题的关键是求出函数的解析式,属于基础题.

    12.已知函数的最小正周期为,且,则的值可以为(   

    A B C D

    【答案】AD

    【分析】

    根据周期公式可求出,再根据可知直线为函数图象的一条对称轴,即可得,即可解出

    【详解】

    由题意知,,因为

    所以直线为函数图象的一条对称轴,即

    所以,,解得

    因为,所以

    故选:AD

    【点睛】

    本题主要考查三角函数周期公式的应用,利用三角函数性质求解析式,属于基础题.

    三、填空题

    13.函数的部分图像如图所示,则的值为_______________.

    【答案】-1

    【解析】

    【分析】

    有函数图象得函数 的周期性、对称轴、对称中心,求得

    【详解】

    由函数图象得,得最小正周期为,所以,由图象函数图象关于点中心对称,关于轴对称,且

    【点睛】

    的图象求解析式或求值,可根据图象得函数周期,最值,特殊值点,再分别求得的值,解决问题,也可根据函数性质,将问题转化为给定区间内问题,借助图象及性质解决

    14.若将函数的图象沿轴向右平移个单位后所得的图象与的图象关于轴对称,则的最小值为________________.

    【答案】

    【分析】

    由题意利用函数的图象变换规律,三角函数的图像的对称性,求得的最小值.

    【详解】

    解:将函数的图象沿轴向右平移个单位长度,可得

    的图象.

    根据图象与的图象关于轴对称,可得

    ,即时,的最小值为.

    故答案为:.

    【点睛】

    本题主要考查函数的图象变换规律,正弦函数图像的对称性,属于基础题.

    15.单摆从某点开始来回摆动,离开平衡位置的距离)和时间)的函数关系是,(),则__________

     

    【答案】

    【解析】

    最大,

    故答案为

    16.已知函数的图象与直线恰有四个公共点,其中,则=______.

    【答案】

    【分析】

    画出函数的图象,结合函数图象的特点,利用导数求出曲线的切线方程,可以求出的值.

    【详解】

    函数的图象如下图所示:直线过定点

    时,,由图象可知切点坐标为

    切线方程为:,又因为切线过点,则有

    ,即

    【点睛】

    本题考查了三角函数图象的画法,以及利用导数求曲线切线方程,考查了数形结合思想.

    四、解答题

    17.把函数的图象向左平移个单位长度,再将图象上所有点的横坐标缩短为原来的倍(纵坐标不变)得到函数的图象.

    1)写出函数的解析式;

    2)若时,关于的方程有两个不等的实数根,求实数的取值范围.

    【答案】(;.

    【解析】试题分析:()根据图象左右平移和横向伸缩变换的原则可得到解析式;
    )方程有两个不等实数根等价于直线有两个交点,结合函数图象可知范围.

    试题解析:

    )函数的图象向左平移个单位长度,得到,再将图象上所有点的横坐标缩短为原来的倍(纵坐标不变)得到函数的图象,.)由.,由,

    方程有两个不等实数根等价于直线有两个交点,结合函数图象可知.

    点睛:利用函数零点的情况求参数值或取值范围的方法

    (1)利用零点存在的判定定理构建不等式求解.

    (2)分离参数后转化为函数的值域(最值)问题求解.

    (3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.

    18.已知点是函数图像上一点,点到直线的距离为1.

    1)求函数的解析式;

    2)令,求的值.

    【答案】(1;(2

    【解析】

    【分析】

    1)先利用,求出,最后,利用到直线的距高为1.,求得答案

    2)利用令 

     

    进行求解即可

    【详解】

    1上点,

    .

    到直线的距高为1.

    .

    2

     

     

    ①+②,得.

    【点睛】

    本题考查三角函数的应用,属于基础题

    19.已知函数的部分图象如图所示.

    1)求函数的解析式;(2)求函数的定义域.

    【答案】(12

    【分析】

    1)先由函数图像,得到,求出,再由,根据题中条件,求出,即可得出函数解析式;

    2)根据解析式,得到,即,根据正弦函数的性质求解,即可得出结果.

    【详解】

    1)由函数的部分图象知,

    2函数

    ,解得:

    的定义域为.

    【点睛】

    本题主要考查由三角函数的图像求函数解析式,以及求复合函数定义域的问题,熟记正弦函数的性质即可,属于常考题型.

    20.已知函数在一个周期内的图像经过点和点,且的图像有一条对称轴为.

    1)求的解析式及最小正周期;

    2)求的单调递增区间.

    【答案】(1;(2.

    【分析】

    1)由函数的图象经过点fx)的图象有一条对称轴为直线

    可得最大值A,且能得周期并求得ω,由五点法作图求出的值,可得函数的解析式.

    2)利用正弦函数的单调性求得fx)的单调递增区间.

    【详解】

    1)函数fx)=Asinωx+)(A0ω0)在一个周期内的图象经过点,且fx)的图象有一条对称轴为直线

    故最大值A4,且,

    ∴ω3.所以.

    因为的图象经过点,所以,所以.

    因为,所以,所以.

    2)因为,所以

    所以

    的单调递增区间为.

    【点睛】

    本题主要考查由函数yAsinωx+)的性质求解析式,通常由函数的最大值求出A,由周期求出ω,由五点法作图求出的值,考查了正弦型函数的单调性问题,属于基础题.

    21.已知函数)的图象关于直线对称,且图象上相邻两个最高点的距离为π.

    1)求的值;

    2)若),求的值.

    【答案】(1;(2.

    【分析】

    1)由可得,又的图象关于直线对称,可得,即可算出

    2,利用平方和及的范围计算即可得到答案.

    【详解】

    解:(1)因为的图象上相邻两个最高点距离为π,所以的最小正周期,从而.

    的图象关于直线对称,所以,即.

    .

    2)由(1)得

    所以.

    所以.

    【点睛】

    本题考查利用三角函数的性质求解析式以及给值求值的问题,考查学生的运算能力,是一道基础题.

    22.函数的图像如图所示,求AB的值.

    【答案】

    【分析】

    由函数y的部分图象结合最值,周期,求出ABωφ的值即可.

    【详解】

    因为函数的最大值为2,最小值为0

    解方程,得.

    .∴.

    函数为.

    函数图像过点

    .∴.∴.

    .

    【点睛】

    本题考查了由三角函数的部分图象求解析式的问题,是基础题.

     

     

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map