人教版2021年八年级上册期末第11-15章综合复习卷 word版,含解析
展开
这是一份人教版2021年八年级上册期末第11-15章综合复习卷 word版,含解析,共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教版2021年八年级上册期末第11-15章综合复习卷一、选择题(共10题)1、 下面四个交通标志图中为轴对称图形的是( )A. B. C. D.2、 三角形的三个外角的和是( )A.90° B.180° C.270° D.360°3、 如果分式有意义,则x的取值范围是( )A.全体实数 B.x≠1 C.x=1 D.x>14、 下列运算中,正确的是( )A.x3•x3=x6 B.3x2+2x3=5x5 C.(x2)3=x5 D.(ab)3=a3b5、 使两个直角三角形全等的条件是( )A.一个锐角对应相等 B.两个锐角对应相等 C.一条边对应相等 D.两条边对应相等6、 下列由左到右的变形,属于因式分解的是( )A.(x+2)(x﹣2)=x2﹣4 B.x2﹣4=(x+2)(x﹣2) C.x2﹣4+3x=(x+2)(x﹣2)+3x D.x2+4x﹣2=x(x+4)﹣27、 如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是( )A.1 B.2 C. D.48、 如图,△ABC中,∠A=40°,∠ABO=20°,∠ACO=30°,则∠BOC等于( )A.80° B.85° C.90° D.无法确定9、 解分式方程+=3时,去分母后变形为( )A.2+(x+2)=3(x﹣1) B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)10、 如图,已知AB=AC,AE=AF,BE与CF交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是( )A.① B.② C.①和② D.①②③二、填空题(共7题)1、 分解因式:2a2﹣8= .2、 若分式的值为零,则x的值等于 .3、 计算:6a2b÷2a= .4、 计算:()﹣1﹣(﹣1)0= 5、 在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE=40°,则∠DBC= .6、 若x2+kx+4是完全平方式,则k的值是 .7、 如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为 .三、解答题(共9题)1、 计算:(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2. 2、 解分式方程: =1﹣ 3、 先化简,再求值: •﹣3(x﹣1),其中x=2. 4、 如图,已知△ABC,∠BAC=90°,(1)尺规作图:作∠ABC的平分线交AC于D点(保留作图痕迹,不写作法)(2)若∠C=30°,求证:DC=DB. 5、 如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,两线相交于F点.(1)若∠BAC=60°,∠C=70°,求∠AFB的大小;(2)若D是BC的中点,∠ABE=30°,求证:△ABC是等边三角形. 6、 如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法) 7、 已知:如图1,点A是线段DE上一点,∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE,(1)求证:DE=BD+CE.(2)如果是如图2这个图形,我们能得到什么结论?并证明. 8、 乘法公式的探究与应用:(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是 (写成两数平方差的形式)(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是 ,宽是 ,面积是 (写成多项式乘法的形式).(3)比较甲乙两图阴影部分的面积,可以得到公式(两个)公式1: 公式2: (4)运用你所得到的公式计算:10.3×9.7. 9、 如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.(1)如图1,求C点坐标;(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;(3)在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标. 参考答案一、选择题1、 B解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.2、 D解:根据三角形外角的性质,可得三角形的三个外角的和是360°.故选:D.3、 B解:∵分式有意义,∴x﹣1≠0,解得:x≠1.4、 A.5、 D解:A、一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故A选项错误;B、两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故B选项错误;C、一条边对应相等,再加一组直角相等,不能得出两三角形全等,故C选项错误;D、两条边对应相等,若是两条直角边相等,可利用SAS证全等;若一直角边对应相等,一斜边对应相等,也可证全等,故D选项正确.6、 B解:A、是整式的乘法,故A错误;B、把一个多项式转化成几个整式积的形式,故B正确;C、没把一个多项式转化成几个整式积的形式,故C错误;D、没把一个多项式转化成几个整式积的形式,故D错误;7、 B解:作PE⊥OA于E,∵点P是∠AOB平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD=2,8、 C解:如图,延长BO交AC于D∵∠A=40°,∠ABO=20°,∴∠BDC=∠A+∠ABO=40°+20°=60°,∵∠ACO=30°,∴∠BOC=∠ACO+∠BDC=30°+60°=90°,9、 D.10、 D解:如图,连接AD;在△ABE与△ACF中,,∴△ABE≌△ACF(SAS);∴∠B=∠C;∵AB=AC,AE=AF,∴BF=CE;在△CDE与△BDF中,,∴△CDE≌△BDF(AAS),∴DC=DB;在△ADC与△ADB中,,∴△ADC≌△ADB(SAS),∴∠CAD=∠BAD;综上所述,①②③均正确,二、填空题1、 2(a+2)(a﹣2) .【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【解答】解:2a2﹣8=2(a2﹣4),=2(a+2)(a﹣2).2、 2 .【解答】解:根据题意得:x﹣2=0,解得:x=2.此时2x+1=5,符合题意,3、 3ab .【分析】根据单项式除单项式的法则计算,再根据系数相等,相同字母的次数相同列式求解即可.【解答】解:原式=3ab.故答案是:3ab.4、 1 【分析】直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.【解答】解:原式=2﹣1=1.5、 15° .【分析】根据线段垂直平分线的概念得到∠AED=90°,进一步求出∠ABD=∠A=50°,根据三角形内角和定理和等腰三角形的性质计算即可.【解答】解:∵DE是AB的垂直平分线,∴DE⊥AB,∴∠AED=90°,又∵∠ADE=40°,∴∠ABD=∠A=50°,又∵AB=AC,∴∠ABC=65°,∴∠DBC=15°.6、 ±4 .【解答】解:∵x2+kx+4是一个多项式的完全平方,∴kx=±2×2•x,∴k=±4.7、 8 .【解答】解:连接AD交EF与点M′,连结AM.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得AD=6,∵EF是线段AB的垂直平分线,∴AM=BM.∴BM+MD=MD+AM.∴当点M位于点M′处时,MB+MD有最小值,最小值6.∴△BDM的周长的最小值为DB+AD=2+6=8.三、解答题1、 解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.2、 解:方程两边同乘以,得∴1=x﹣1+1∴x=1检验:当 x=1 时,x﹣1=0,∴x=1不是原方程的解∴原方程无解3、 解:原式=•﹣3x+3=2x+2﹣3x+3=5﹣x,当x=2时,原式=5﹣2=3.4、 【解答】(1)解:射线BD即为所求;(2)∵∠A=90°,∠C=30°,∴∠ABC=90°﹣30°=60°,∵BD平分∠ABC,∴∠CBD=∠ABC=30°,∴∠C=∠CBD=30°,∴DC=DB.5、 (1)解:∵∠BAC=60°,∠C=70°,∴∠ABC=180°﹣60°﹣70°=50°,∵BE平分∠ABC,∴∠FBD=∠ABC=25°,∵AD⊥BC,∴∠BDF=90°,∴∠ABF=∠FBD+∠BDF=115°.(2)证明:∵∠ABE=30°,BE平分∠ABC,∴∠ABC=60°,∵BD=DC,AD⊥BC,∴AB=AC,∴△ABC是等边三角形.6、 解:(1)所建立的平面直角坐标系如下所示:(2)点B和点C的坐标分别为:B(﹣3,﹣1)C(1,1);(3)所作△A'B'C'如下图所示.7、 证明:(1)∵BD⊥DE,CE⊥DE,∴∠D=∠E=90°,∴∠DBA+∠DAB=90°,∵∠BAC=90°,∴∠DAB+∠CAE=90°,∴∠DBA=∠CAE,∵AB=AC,∴△ADB≌△CEA,∴BD=AE,CE=AD,∴DE=AD+AE=CE+BD;(2)BD=DE+CE,理由是:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,∴∠ABD+∠BAD=90°,∵∠BAC=90°,∴∠ABD+∠EAC=90°,∴∠BAD=∠EAC,∵AB=AC,∴△ADB≌△CEA,∴BD=AE,CE=AD,∵AE=AD+DE,∴BD=CE+DE.8、 解:(1)阴影部分的面积=大正方形的面积﹣小正方形的面积=a2﹣b2;(2)长方形的宽为a﹣b,长为a+b,面积=长×宽=(a+b)(a﹣b);故答案为:a+b,a﹣b,(a+b)(a﹣b);(3)由(1)、(2)得到,公式1:(a+b)(a﹣b)=a2﹣b2;公式2:a2﹣b2=(a+b)(a﹣b)故答案为:(a+b)(a﹣b),a2﹣b2=(a+b)(a﹣b);(4)10.3×9.7=(10+0.3)(10﹣0.3)=102﹣0.32=100﹣0.09=99.91.9、 解:(1)作CH⊥y轴于H,则∠BCH+∠CBH=90°,∵AB⊥BC,∴∠ABO+∠CBH=90°,∴∠ABO=∠BCH,在△ABO和△BCH中,,∴△ABO≌△BCH,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C点坐标为(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,在△PBA和△QBC中,,∴△PBA≌△QBC,∴PA=CQ;(3)∵△BPQ是等腰直角三角形,∴∠BQP=45°,当C、P,Q三点共线时,∠BQC=135°,由(2)可知,△PBA≌△QBC,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P点坐标为(1,0).
相关试卷
这是一份综合解析人教版数学八年级上册期末综合复习试题 B卷(含详解),共23页。
这是一份初中数学人教版九年级上册本册综合课后练习题,文件包含答案docx、A卷docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
这是一份人教版2021年八年级上册第11-15章期末常考题型综合训练卷 word版,含解析,共14页。试卷主要包含了若分式有意义,则x的取值范围是,下列各式中,计算正确的是等内容,欢迎下载使用。