|课件下载
搜索
    上传资料 赚现金
    专题12.12 三角形全等作辅助线模型(二)-截长补短(知识讲解)-2021-2022学年八年级数学上册基础知识专项讲练(人教版)
    立即下载
    加入资料篮
    专题12.12 三角形全等作辅助线模型(二)-截长补短(知识讲解)-2021-2022学年八年级数学上册基础知识专项讲练(人教版)01
    专题12.12 三角形全等作辅助线模型(二)-截长补短(知识讲解)-2021-2022学年八年级数学上册基础知识专项讲练(人教版)02
    专题12.12 三角形全等作辅助线模型(二)-截长补短(知识讲解)-2021-2022学年八年级数学上册基础知识专项讲练(人教版)03
    还剩12页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题12.12 三角形全等作辅助线模型(二)-截长补短(知识讲解)-2021-2022学年八年级数学上册基础知识专项讲练(人教版)

    展开

    专题12.12 三角形全等作辅助线模型(二)-截长补短

    (知识讲解)

    有一类几何题其命题主要证明三条线段长段的“和”或“差”及其比例关系,这一类题目一般可以采取“截长”或“补短”的方法来进行求解。所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段与已经线段相等,然后证明其中的另一段与已知的另一段的大小关系。所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等,然后求出延长后的线段与最长的已知线段关系。有的是采取截长补短后,使之构成某种特定的三角形进行求解。

    【典型例题】

    1 阅读下面文字并填空:

    数学习题课上李老师出了这样一道题:如图1,在中,AD平分.求证:

    李老师给出了如下简要分析:要证就是要证线段的和差问题,所以有两个方法,方法一:截长法如图2,在AC上截取,连接DE,只要证__________即可,这就将证明线段和差问题__________为证明线段相等问题,只要证出____________________,得出_________,再证出_____________________,进而得出,则结论成立.此种证法的基础是已知AD平分,将沿直线AD对折,使点B落在AC边上的点E成为可能.

    方法二:补短法如图3,延长AB至点F,使.只要证即可.此时先证__________,再证出__________________,则结论成立.

    截长补短法是我们今后证明线段或角的和差倍分问题常用的方法.

    【答案】方法一:;转化;;方法二:

    【分析】

    方法一:在AC上截取,由SAS可证可得BD=DE,根据等角对等边得到CE=DE,即可求证;

    方法二:延长AB至点F,使,由AAS可证,可得AC=AF,即可证明

    方法一:在AC上截取,连接DE,如图2

    ∵AD平分

    BD=DE

    ∴DE=CE

    ∴AB+BD=AE+CE=AC

    故答案为:;转化;

    方法二:如图3,延长AB至点F,使

    ∴AC=AF

    ∴AC=AB+BF=AB+BD

    故答案为:

    点拨】本题考查了全等三角形的判定和性质,属于截长补短类辅助线,核心思想为数学中的转化思想,此类题的关键是要找到最长边和最短边,然后确定截取辅助线的方式.

    举一反三:

    【变式】 数学课上,小白遇到这样一个问题:

    如图1,在等腰中,,求证

    在此问题的基础上,老师补充:

    过点于点于点,过于点,交于点,试探究线段之间的数量关系,并说明理由.

    小白通过研究发现,有某种数量关系;

    小明通过研究发现,将三条线段中的两条放到同一条直线上,即截长补短,再通过进一步推理,可以得出结论.

    阅读上面材料,请回答下面问题:

    1)求证

    2)猜想的数量关系,并证明;

    3)探究线段之间的数量关系,并证明.

    【答案】1)见解析;(2,证明见解析;(3,证明见解析

    【分析】(1)利用SAS证明可得结论;(2)设,推出,即可证明

    3)过点延长线于点,延长于点,证明△ABE≌△CAM,得出,从而证明△NFC≌△MFC,得到,可得PN=PE,从而得出BP=AF+PF.

    1证明:△ABE△ACD中,

    SAS),

    2)设

    3)过点延长线于点,延长于点

    △ABE△CAM中,

    ASA),

    ASA),

    .

    点拨】本题考查了全等三角形的判定和性质、等腰直角三角形的性质以及等角对等边等知识点,解题的关键是根据截长补短法添加适当的辅助线,构造全等三角形证明结论,有一定难度.

    2 阅读材料并完成习题:

    在数学中,我们会用截长补短的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°AB=AD,若AC=2cm,求四边形ABCD的面积.

    解:延长线段CBE,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=2∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四边形ABCD=S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积.

    1)根据上面的思路,我们可以求得四边形ABCD的面积为       cm2

    2)请你用上面学到的方法完成下面的习题.

              

    如图2,已知FG=FN=HM=GH+MN=2cm∠G=∠N=90°,求五边形FGHMN的面积.

    【答案】12;(24

    【分析】

    1)根据题意可直接求等腰直角三角形EAC的面积即可;

    2)延长MNK,使NK=GH,连接FKFHFM,由(1)易证,则有FK=FH,因为HM=GH+MN易证,故可求解.

    【详解】

    1)由题意知

    故答案为2

    2)延长MNK,使NK=GH,连接FKFHFM,如图所示:

    FG=FN=HM=GH+MN=2cm∠G=∠N=90°

    ∠FNK=∠FGH=90°

    FH=FK

    FM=FMHM=KM=MN+GH=MN+NK

    MK=FN=2cm

    点拨

    本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用.

    举一反三:

    【变式】 △ABC中,∠ACB=2∠B,(1)如图,当∠C=90°AD∠ABC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.请证明AB=AC+CD

    2如图,当∠C≠90°AD∠BAC的角平分线时,线段ABACCD又有怎样的数量关系?请直接写出你的结论,不要求证明;

    如图,当∠C≠90°AD△ABC的外角平分线时,线段ABACCD又有怎样的数量关系?请写出你的猜想并证明.

    【答案】(1)证明见解析;(2①AB=AC+CD②AC+AB=CD,证明见解析.

    【分析】

    1)首先得出△AED≌△ACDSAS),即可得出∠B=∠BDE=45°,求出BE=DE=CD,进而得出答案;

    2首先得出△AED≌△ACDSAS),即可得出∠B=∠BDE,求出BE=DE=CD,进而得出答案;

    首先得出△AED≌△ACDSAS),即可得出∠B=∠EDC,求出BE=DE=CD,进而得出答案.

    1证明:∵AD∠ABC的角平分线,

    ∴∠EAD=∠CAD

    △AED△ACD中,∵AE=AC∠EAD=∠CADAD=AD

    ∴△AED≌△ACDSAS),

    ∴ED=CD∠C=∠AED=90°

    ∵∠ACB=2∠B∠C=90°

    ∴∠B=45°∴∠BDE=45°

    ∴BE=ED=CD

    ∴AB=AE+BE=AC+CD

    ①AB=AC+CD.理由如下

    AB上截取AE=AC,连接DE

    ∵AD∠ABC的角平分线,∴∠EAD=∠CAD

    △AED△ACD中,∵AE=AC∠EAD=∠CADAD=AD

    ∴△AED≌△ACDSAS),

    ∴ED=CD∠C=∠AED

    ∵∠ACB=2∠B

    ∴∠AED=2∠B

    ∵∠B+∠BDE=∠AED

    ∴∠B=∠BDE∴BE=ED=CD

    ∴AB=AE+BE=AC+CD

    ②AC+AB=CD理由如下:

     在射线BA上截取AE=AC,连接DE

    ∵AD∠EAC的角平分线,

    ∴∠EAD=∠CAD

    △AED△ACD中,∵AE=AC∠EAD=∠CADAD=AD

    ∴△AED≌△ACDSAS),

    ∴ED=CD∠ACD=∠AED

    ∵∠ACB=2∠B

    ∠B=x,则∠ACB=2x∴∠EAC=3x∴∠EAD=∠CAD=1.5x

    ∵∠ADC+∠CAD=∠ACB=2x∴∠ADC=0.5x∴∠EDC=x

    ∴∠B=∠EDC∴BE=ED=CD

    ∴AB+AE=BE=AC+AB=CD

    点拨】此题主要考查了全等三角形的判定与性质以及三角形外角的性质等知识,利用已知得出△AED≌△ACD是解题关键.

    3(初步探索)截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.

    1)如图1ABC是等边三角形,点D是边BC下方一点,BDC120°,探索线段DADBDC之间的数量关系;

    (灵活运用)

    2)如图2ABC为等边三角形,直线aABDBC边上一点,ADE交直线a于点E,且ADE60°.求证:CDCECA

    (延伸拓展)

    3)如图3,在四边形ABCD中,ABCADC180°ABAD.若点ECB的延长线上,点FCD的延长线上,满足EFBEFD,请直接写出EAFDAB的数量关系.

    【答案】1DA=DC+DB,证明见详解;(2)见详解;(3∠EAF=,证明见详解.

    【分析】

    1)由等边三角形知AB=AC∠BAC=60°,结合∠BDC=120°∠ABD+∠ACD=180°,由∠ACE+∠ACD=180°∠ABD=∠ACE,证△ABD≌△ACEAD=AE∠BAD=∠CAE,再证△ADE是等边三角形得DA=DE=DC+CE=DC+DB

    2)首先在AC上截取CM=CD,由△ABC为等边三角形,易得△CDM是等边三角形,继而可证得△ADM≌△EDC,即可得AM=EC,则可证得CD+CE=CA

    3)在DC延长线上取一点G,使得DG=BE,连接AG,先判定△ADG≌△ABE,再判定△AEF≌△AGF,得出∠FAE=∠FAG,最后根据∠FAE+∠FAG+∠GAE=360°,进而推导得到2∠FAE+∠DAB=360°,即可得出结论.

    解答:DA=DC+DB,理由如下:

    1)如图1,延长DC到点E,使CE=BD,连接AE

    ∵△ABC是等边三角形,

    ∴AB=AC∠BAC=60°

    ∵∠BDC=120°

    ∴∠ABD+∠ACD=180°

    ∵∠ACE+∠ACD=180°

    ∴∠ABD=∠ACE

    ∴△ABD≌△ACESAS),

    ∴AD=AE∠BAD=∠CAE

    ∵∠BAC=60°,即∠BAD+∠DAC=60°

    ∴∠DAC+∠CAE═60°,即∠DAE=60°

    ∴△ADE是等边三角形,

    ∴DA=DE=DC+CE=DC+DB

    DA=DC+DB

    2)证明:在AC上截取CM=CD

    ∵△ABC是等边三角形,

    ∴∠ACB=60°

    ∴△CDM是等边三角形,

    ∴MD=CD=CM∠CMD=∠CDM=60°

    ∴∠AMD=120°

    ∵∠ADE=60°

    ∴∠ADE=∠MDC

    ∴∠ADM=∠EDC

    直线a∥AB

    ∴∠ACE=∠BAC=60°

    ∴∠DCE=120°=∠AMD

    △ADM△EDC中,

    ∴△ADM≌△EDC(ASA)

    ∴AM=EC

    ∴CA=CM+AM=CD+CE

    CD+CE=CA.

    3∠EAF=

    证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG

    ∵∠ABC+∠ADC=180°∠ABC+∠ABE=180°

    ∴∠ADC=∠ABE

    ∵AB=AD

    ∴△ADG≌△ABESAS),

    ∴AG=AE∠DAG=∠BAE

    ∵EF=BE+FD=DG+FD=GFAF=AF

    ∴△AEF≌△AGFSSS),

    ∴∠FAE=∠FAG

    ∵∠FAE+∠FAG+∠GAE=360°

    ∴2∠FAE+∠GAB+∠BAE=360°

    ∴2∠FAE+∠GAB+∠DAG=360°

    2∠FAE+∠DAB=360°

    ∴∠EAF=.

    点拨】本题属于三角形综合题,主要考查了全等三角形的判定和性质,以及等边三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形.

    举一反三:

    【变式1 如图,平分平分,点上,求证:.

    【分析】在BC上取点F,使BF=BA,连接EF,由角平分线的性质可以得出∠1=∠2,从而可以得出△ABE≌△FBE,可以得出∠A=∠5,进而可以得出△CDE≌△CFE,就可以得出CD=CF,即可得出结论.

    证明:BC上取点F,使BF=BA,连接EF

    ∵BECE分别是∠ABC∠BCD的平分线,

    ∴∠1=∠2∠3=∠4

    △ABE△FBE中,

    ∴△ABE≌△FBE(SAS)

    ∴∠A=∠5

    ∵AB∥CD

    ∴∠A+∠D=180°

    ∴∠5+∠D=180

    ∵∠5+∠6=180°

    ∴∠6=∠D

    △CDE△CFE中,

    ∴△CDE≌△CFE(AAS)

    ∴CF=CD

    ∵BC=BF+CF

    ∴BC=AB+CD

    点拨】本题考查了角平分线的性质的运用,全等三角形的判定及性质的运用,解答时运用截取法正确作辅助线是关键.

     【变式2如图,在ABC中,PQ分别在BCCA上,并且APBQ分别是BACABC的角平分线.求证:

    1

    2

    【答案】(1)见解析;(2)见解析

    【分析】

    1)由三角形的内角和就可以得出∠ABC80°,再由角平分线的性质就可以得出∠QBC40°,就有∠QBC∠C而得出结论;

    2)延长ABM,使得BMBP,连结MP,根据条件就可以得出∠M∠C,进而证明△AMP≌△ACP就可以得出结论.

    1证明:∵BQ的角平分线,

    ,且

    2证明:延长ABM,使得,连结MP

    ∵△ABC

    ∵BQ平分

    ∵AP平分

    △AMP△ACP中,

    ∴△AMP≌△ACP

          

    点拨】本题主要考查全等三角形的判定与性质的知识点,解答本题的关键是熟练掌握判定两个三角形全等的一般方法:SSSSASASAAASHL.注意:AAASSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题12.12 三角形全等作辅助线模型(二)-截长补短(知识讲解)-2021-2022学年八年级数学上册基础知识专项讲练(人教版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map