|试卷下载
搜索
    上传资料 赚现金
    专题13.22《轴对称》中考真题专练(培优篇)(专项练习)-2021-2022学年八年级数学上册基础知识专项讲练(人教版)
    立即下载
    加入资料篮
    专题13.22《轴对称》中考真题专练(培优篇)(专项练习)-2021-2022学年八年级数学上册基础知识专项讲练(人教版)01
    专题13.22《轴对称》中考真题专练(培优篇)(专项练习)-2021-2022学年八年级数学上册基础知识专项讲练(人教版)02
    专题13.22《轴对称》中考真题专练(培优篇)(专项练习)-2021-2022学年八年级数学上册基础知识专项讲练(人教版)03
    还剩22页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题13.22《轴对称》中考真题专练(培优篇)(专项练习)-2021-2022学年八年级数学上册基础知识专项讲练(人教版)

    展开
    这是一份专题13.22《轴对称》中考真题专练(培优篇)(专项练习)-2021-2022学年八年级数学上册基础知识专项讲练(人教版),共25页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题13.22 《轴对称》中考真题专练(培优篇)(专项练习)
    一、单选题
    1.(2015·四川遂宁·中考真题)如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为( )

    A.1cm B.2cm C.3cm D.4cm
    2.(2010·广东深圳市·中考真题)如图,△ABC中,AC=AD=BD,∠DAC=80º,则∠B的度数是( )

    A.40º B.35º C.25º D.20º
    3.(2019·广东中考真题)如图,已知,以两点为圆心,大于的长为半径画圆,两弧相交于点,连接与相较于点,则的周长为( )

    A.8 B.10 C.11 D.13
    4.(2017·湖北襄阳·中考真题)如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为(  )

    A.5 B.6 C.7 D.8
    5.(2018·山东滨州·中考真题)如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是(  )

    A. B. C.6 D.3
    6.(2016·贵州黔东南·中考真题)如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE=( )

    A. B. C.2 D.
    7.(2012·甘肃兰州·)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为( )

    A.130° B.120° C.110° D.100°
    8.(2019·山东滨州·中考真题)如图,在和中,,连接交于点,连接.下列结论:①;②;③平分;④平分.其中正确的个数为(  ).

    A.4 B.3 C.2 D.1
    9.(2021·四川广元·中考真题)如图,在中,,,点D是边的中点,点P是边上一个动点,连接,以为边在的下方作等边三角形,连接.则的最小值是( )

    A. B.1 C. D.
    10.(2021·内蒙古通辽·中考真题)如图,在中,,根据尺规作图的痕迹,判断以下结论错误的是( )

    A. B.
    C. D.

    二、填空题
    11.(2015·河北中考真题)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:
    以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;
    再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;
    再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…
    这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=__.

    12.(2018·吉林长春·中考真题)如图,在△ABC中,AB=AC,以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD,若∠A=32°,则∠CDB的大小为_____度.

    13.(2019·湖北黄冈·中考真题)如图,在的同侧,,点为的中点,若,则的最大值是_____.

    14.(2018·湖南邵阳市·中考真题)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是_____.

    15.(2017·贵州安顺·中考真题)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形AnBn﹣1Bn顶点Bn的横坐标为________________.

    16.(2015·云南昆明·中考真题)如图,△ABC是等边三角形,高AD、BE相交于点H,BC=4,在BE上截取BG=2,以GE为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为_____.

    17.(2015·青海西宁市·中考真题)如图,△ABC是边长为1的等边三角形,BD为AC边上的高,将△ABC折叠,使点B与点D重合,折痕EF交BD于点D1,再将△BEF折叠,使点B于点D1重合,折痕GH交BD1于点D2,依次折叠,则BDn=____.

    18.(2016·江苏苏州·中考真题)如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为______.

    19.(2013·浙江绍兴·中考真题)如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是__


    三、解答题
    20.(2019·四川广安·中考真题)在数学活动课上,王老师要求学生将图1所示的3×3正方形方格纸,剪掉其中两个方格,使之成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)

    请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个3×3的正方形方格画一种,例图除外)

    21.(2019·河北中考真题)如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的内心.
    (1)求证:∠BAD=∠CAE;
    (2)设AP=x,请用含x的式子表示PD,并求PD的最大值;
    (3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.

    22.(2020·浙江绍兴·中考真题)问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA=EC,若∠BAE=90°,∠B=45°,求∠DAC的度数.
    答案:∠DAC=45°
    思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由;
    (2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.





    23.(2020·青海中考真题)在中,,交BA的延长线于点G.
    特例感知:
    (1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到.请给予证明.

    猜想论证:
    (2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作垂足为E.此时请你通过观察、测量DE,DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想.

    联系拓展:
    (3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)























    参考答案
    1.C
    【详解】
    试题分析:∵MN是线段AB的垂直平分线,∴AN=BN,∵△BCN的周长是7cm,∴BN+NC+BC=7(cm),∴AN+NC+BC=7(cm),∵AN+NC=AC,∴AC+BC=7(cm),又∵AC=4cm,∴BC=7﹣4=3(cm).故选C.
    考点:线段垂直平分线的性质.
    2.C
    【详解】
    分析:先根据等腰三角形的性质及三角形内角和定理求出∠ADC的度数,再根据等腰三角形的性质及三角形外角与内角的关系求出∠B的度数即可.
    解:∵AC=AD,
    ∴∠ADC=∠C,
    ∵∠ADC+∠C+∠DAC=180°,∠DAC=80°,
    ∴∠ADC=(180°-80°)÷2=50°,
    ∵AD=BD,
    ∴∠B=∠BAD,
    ∵∠ADC=∠B+∠BAD=50°,
    ∴∠B=(50÷2)=25°.
    故答案为C.
    3.A
    【分析】利用基本作图得到MN垂直平分AB,利用线段垂直平分线的定义得到DA=DB,然后利用等线段代换得到△BDC的周长=AC+BC.
    【详解】
    由作法得MN垂直平分AB,
    ∴DA=DB,
    ∴△BDC的周长=DB+DC+BC=DA+DC+BC=AC+BC=5+3=8.
    故选A.
    【点拨】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.
    4.B
    【详解】
    试题分析:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.
    ∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=6.故选B.

    考点:作图—基本作图;含30度角的直角三角形.
    5.D
    【详解】
    分析:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.
    详解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,
    则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,
    ∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,
    ∴此时△PMN周长最小,
    作OH⊥CD于H,则CH=DH,
    ∵∠OCH=30°,
    ∴OH=OC=,
    CH=OH=,
    ∴CD=2CH=3.
    故选D.

    【点拨】:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.
    6.A
    【详解】
    试题分析:连接OC,∵等腰直角△ABC中,AB=,∴∠B=45°,∴cos∠B=,∴BC=×cos45°=×=,∵点O是AB的中点,∴OC=AB=OB,OC⊥AB,∴∠COB=90°,∵∠DOC+∠COE=90°,∠COE+∠EOB=90°,∴∠DOC=∠EOB,同理得∠ACO=∠B,∴△ODC≌△OEB,∴DC=BE,∴CD+CE=BE+CE=BC=,故选A.

    考点:全等三角形的判定与性质;等腰直角三角形.
    7.B
    【详解】
    根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案:
    如图,作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交CD于N,

    则A′A″即为△AMN的周长最小值.作DA延长线AH.
    ∵∠BAD=120°,∴∠HAA′=60°.
    ∴∠AA′M+∠A″=∠HAA′=60°.
    ∵∠MA′A=∠MAA′,∠NAD=∠A″,
    且∠MA′A+∠MAA′=∠AMN,
    ∠NAD+∠A″=∠ANM,
    ∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°.
    故选B.
    8.B
    【分析】根据题意逐个证明即可,①只要证明,即可证明;
    ②利用三角形的外角性质即可证明; ④作于,于,再证明即可证明平分.
    【详解】
    解:∵,
    ∴,
    即,
    在和中,,
    ∴,
    ∴,①正确;
    ∴,
    由三角形的外角性质得:
    ∴°,②正确;
    作于,于,如图所示:

    则°,
    在和中,,
    ∴,
    ∴,
    ∴平分,④正确;
    正确的个数有3个;
    故选B.
    【点拨】本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.
    9.B
    【分析】以CD为边作等边三角形CDE,连接EQ,由题意易得∠PDC=∠QDE,PD=QD,进而可得△PCD≌△QED,则有∠PCD=∠QED=90°,然后可得点Q是在QE所在直线上运动,所以CQ的最小值为CQ⊥QE时,最后问题可求解.
    解:以CD为边作等边三角形CDE,连接EQ,如图所示:

    ∵是等边三角形,
    ∴,
    ∵∠CDQ是公共角,
    ∴∠PDC=∠QDE,
    ∴△PCD≌△QED(SAS),
    ∵,,点D是边的中点,
    ∴∠PCD=∠QED=90°,,
    ∴点Q是在QE所在直线上运动,
    ∴当CQ⊥QE时,CQ取的最小值,
    ∴,
    ∴;
    故选B.
    【点拨】本题主要考查等边三角形的性质、含30°直角三角形的性质及最短路径问题,熟练掌握等边三角形的性质、含30°直角三角形的性质及最短路径问题是解题的关键.
    10.B
    【分析】先通过作图过程可得AD平分∠BAC,DE⊥AB,然后证明△ACD≌△AED说明C、D正确,再根据直角三角形的性质说明选项A正确,最后发现只有AE=EB时才符合题意.
    【详解】
    解:由题意可得:AD平分∠BAC,DE⊥AB,
    在△ACD和△AED中
    ∠AED=∠C,∠EAD=∠CAD,AD=AD
    ∴△ACD≌△AED(AAS)
    ∴DE=DC,AE=AC,即C、D正确;
    在Rt△BED中,∠BDE=90°-∠B
    在Rt△BED中,∠BAC=90°-∠B
    ∴∠BDE=∠BAC,即选项A正确;
    选项B,只有AE=EB时,才符合题意.
    故选B.
    【点拨】本题主要考查了尺规作图、全等三角形的性质与判定、直角三角形的性质,正确理解尺规作图成为解答本题的关键.
    11.9
    【详解】
    试题分析:根据等腰三角形的性质和三角形外角的性质依次可得∠A1AB的度数,∠A2A1C的度数,∠A3A2B的度数,∠A4A3C的度数,…,依此得到规律,再根据三角形外角小于90°即可求解.
    解:由题意可知:AO=A1A,A1A=A2A1,…,
    则∠AOA1=∠OA1A,∠A1OA2=∠A1A2A,…,
    ∵∠BOC=9°,
    ∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B=36°的度数,∠A4A3C=45°,…,
    ∴9°n<90°,
    解得n<10.
    由于n为整数,故n=9.
    故选B.
    考点:等腰三角形的性质.
    12.37
    【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=37°.
    【详解】
    ∵AB=AC,∠A=32°,
    ∴∠ABC=∠ACB=74°,
    又∵BC=DC,
    ∴∠CDB=∠CBD=∠ACB=37°,
    故答案为37.
    【点拨】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.
    13.14
    【分析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.
    【详解】
    解:如图,作点关于的对称点,点关于的对称点.





    为等边三角形

    的最大值为,
    故答案为.

    【点拨】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题
    14.
    【解析】
    【分析】由折叠的性质可知AE=CE,再证明△BCE是等腰三角形即可得到BC=CE,问题得解.
    【详解】∵AB=AC,∠A=36°,
    ∴∠B=∠ACB==72°,
    ∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处,
    ∴AE=CE,∠A=∠ECA=36°,
    ∴∠CEB=72°,
    ∴BC=CE=AE=,
    故答案为.
    【【点拨】】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE是等腰三角形是解题的关键.
    15. .
    【详解】
    由题意得OA=OA1=2,
    ∴OB1=OA1=2,B1B2=B1A2=4,B2A3=B2B3=8,
    ∴B1(2,0),B2(6,0),B3(14,0)…,
    2=22﹣2,6=23﹣2,14=24﹣2,…
    ∴Bn的横坐标为,
    故答案为:.
    16.
    【详解】
    试题分析:如图所示,由△ABC是等边三角形,BC=,得到AD=BE=BC=6,∠ABG=∠HBD=30°,由直角三角的性质,得∠BHD=90°﹣∠HBD=60°,由对顶角相等,得∠MHE=∠BHD=60°,由BG=2,得EG=BE﹣BG=6﹣2=4.由GE为边作等边三角形GEF,得FG=EG=4,∠EGF=∠GEF=60°,△MHE是等边三角形;S△ABC=AC•BE=AC×EH×3EH=BE=×6=2.由三角形外角的性质,得∠BIF=∠FGE﹣∠IBG=60°﹣30°=30°,由∠IBG=∠BIG=30°,得IG=BG=2,由线段的和差,得IF=FG﹣IG=4﹣2=2,由对顶角相等,得∠FIN=∠BIG=30°,由∠FIN+∠F=90°,得∠FNI=90°,由锐角三角函数,得FN=1,IN=.S五边形NIGHM=S△EFG﹣S△EMH﹣S△FIN==,故答案为.

    考点:1.等边三角形的判定与性质;2.三角形的重心;3.三角形中位线定理;4.综合题;5.压轴题.

    17..
    【详解】
    试题分析:∵△ABC是边长为1的等边三角形,BD为AC边上的高,∴BD=,
    ∵△BEF是边长为,∴BD1=,∴BD2=,…,∴BDn=,故答案为.
    考点:1.翻折变换(折叠问题);2.等边三角形的性质;3.规律型;4.综合题.
    18.2.
    【详解】
    过点D作DF⊥B′E于点F,过点B′作B′G⊥AD于点G,
    ∵∠B=60°,BE=BD=4,
    ∴△BDE是等边三角形,
    ∵△B′DE≌△BDE,
    ∴B′F=B′E=BE=2,DF=2,
    ∴GD=B′F=2,
    ∴B′G=DF=2,
    ∵AB=10,
    ∴AG=10﹣6=4,
    ∴AB′=2.

    考点:1轴对称;2等边三角形.
    19.12°.
    【解析】
    设∠A=x,
    ∵AP1=P1P2=P2P3=…=P13P14=P14A,
    ∴∠A=∠AP2P1=∠AP13P14=x.
    ∴∠P2P1P3=∠P13P14P12=2x,
    ∠P2P3P4=∠P13P12P10=3x,
    ……,
    ∠P7P6P8=∠P8P9P7=7x.
    ∴∠AP7P8=7x,∠AP8P7=7x.
    在△AP7P8中,∠A+∠AP7P8+∠AP8P7=180°,即x+7x+7x=180°.
    解得x=12°,即∠A=12°.
    20.见解析.
    【分析】根据轴对称图形和旋转对称图形的概念作图即可得.
    【详解】
    解:根据剪掉其中两个方格,使之成为轴对称图形;即如图所示:

    【点拨】本题主要考查利用旋转设计图案,解题的关键是掌握轴对称图形和旋转对称图形的概念.
    21.(1)详见解析;(2)PD的最大值为3;(3)m=105,n=150.
    【分析】(1)根据ASA证明△ABC≌△ADE,得∠BAC=∠DAE,即可得出结论.
    (2)PD=AD﹣AP=6﹣x.可得AP的最小值即AP⊥BC时AP的长度,此时PD可得最大值.
    (3)I为△APC的内心,即I为△APC角平分线的交点,应用“三角形内角和等于180°“及角平分线定义即可表示出∠AIC,从而得到m,n的值.
    【详解】
    (1)如图1.在△ABC和△ADE中,∵,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,∴∠BAD=∠CAE.
    (2)∵AD=6,AP=x,∴PD=6﹣x.
    当AD⊥BC时,APAB=3最小,即PD=6﹣3=3为PD的最大值.
    (3)如图2,设∠BAP=α,则∠APC=α+30°.
    ∵AB⊥AC,∴∠BAC=90°,∠PCA=60°,∠PAC=90°﹣α.
    ∵I为△APC的内心,∴AI平分∠PAC,CI平分∠PCA,∴∠IAC∠PAC,∠ICA∠PCA,∴∠AIC=180°﹣(∠IAC+∠ICA)=180°(∠PAC+∠PCA)=180°(90°﹣α+60°)α+105°
    ∵0<α<90°,∴105°α+105°<150°,即105°<∠AIC<150°,∴m=105,n=150.

    【点拨】本题是一道几何综合题,考查了垂线段最短,含30°的角的直角三角形的性质,全等三角形的判定和性质,三角形内心概念及角平分线定义等,解题的关键是将PD最大值转化为PA的最小值.
    22.(1)∠DAC的度数不会改变,值为45°;(2)n°.
    【分析】(1)根据等腰三角形的性质得到∠AED=2∠C,①求得∠DAE=90°-∠BAD=90°-(45°+∠C)=45°﹣∠C,②由①,②即可得到结论;
    (2)设∠ABC=m°,根据三角形的内角和定理和等腰三角形的性质即可得到结论.
    【详解】
    解:(1)∠DAC的度数不会改变;
    ∵EA=EC,
    ∴∠AED=2∠C,①
    ∵∠BAE=90°,
    ∴∠BAD= [180°﹣(90°﹣2∠C)]=45°+∠C,
    ∴∠DAE=90°﹣∠BAD=90°﹣(45°+∠C)=45°﹣∠C,②
    由①,②得,∠DAC=∠DAE+∠CAE=45°;
    (2)设∠ABC=m°,
    则∠BAD=(180°﹣m°)=90°﹣m°,∠AEB=180°﹣n°﹣m°,
    ∴∠DAE=n°﹣∠BAD=n°﹣90°+m°,
    ∵EA=EC,
    ∴∠CAE=∠AEB=90°﹣n°﹣m°,
    ∴∠DAC=∠DAE+∠CAE=n°﹣90°+m°+90°﹣n°﹣m°=n°.
    【点拨】本题考查了等腰三角形的性质,三角形的内角和定理,正确的识别图形是解题的关键.
    23.(1)证明见详解;(2)DE+DF=CG,证明见详解;(3)成立.
    【分析】(1)通过条件证明△BFC≌△CGB,即可得到;
    (2)过点B作BM⊥CF交CF延长线于M,过点D作DH⊥BM于H,通过△BMC≌△CGB,得到BM=CG,然后由四边形MHDF为矩形,MH=DF,最后再证明△BDH≌△DBE,得到BH=DE,即可得到结论;
    (3)同(2)中的方法.
    【详解】
    (1)∵,
    ∴∠ABC=∠ACB,
    在△BFC和△CGB中,

    ∴△BFC≌△CGB,

    (2)DE+DF=CG,
    如图,过点B作BM⊥CF交CF延长线于M,过点D作DH⊥BM于H,

    ∵,
    ∴∠ABC=∠ACB,
    在△BMC和△CGB中,

    ∴△BMC≌△CGB,
    ∴BM=CG,
    由题意和辅助线可知,∠M=90°,∠MFD=90°,∠MHD=90°,
    ∴四边形MHDF为矩形,
    ∴MH=DF,DH∥MF,
    ∴∠HDB=∠MCB,
    ∴∠HDB=∠ABC,
    在△BDH和△DBE中,

    ∴△BDH≌△DBE,
    ∴BH=DE,
    ∵BM=CG,BM=BH+HM,
    ∴DE+DF=CG,
    (3)成立,
    如图,过点B作BM⊥CF交CF延长线于M,过点D作DH⊥BM于H,

    同(2)中的方法
    ∵,
    ∴∠ABC=∠ACB,
    在△BMC和△CGB中,

    ∴△BMC≌△CGB,
    ∴BM=CG,
    由题意和辅助线可知,∠M=90°,∠MFD=90°,∠MHD=90°,
    ∴四边形MHDF为矩形,
    ∴MH=DF,DH∥MF,
    ∴∠HDB=∠MCB,
    ∴∠HDB=∠ABC,
    在△BDH和△DBE中,

    ∴△BDH≌△DBE,
    ∴BH=DE,
    ∵BM=CG,BM=BH+HM,
    ∴DE+DF=CG.
    【点拨】本题考查了全等三角形的性质和判定,属于几何动态问题,能够正确的构造辅助线找到全等三角形是解题的关键.

    相关试卷

    专题 17.15 勾股定理中考真题专练(培优篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版): 这是一份专题 17.15 勾股定理中考真题专练(培优篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版),共30页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题 16.17 二次根式中考真题专练(培优篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版): 这是一份专题 16.17 二次根式中考真题专练(培优篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版),共24页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题23.14 《旋转》中考真题专练(培优篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版): 这是一份专题23.14 《旋转》中考真题专练(培优篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版),共59页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题13.22《轴对称》中考真题专练(培优篇)(专项练习)-2021-2022学年八年级数学上册基础知识专项讲练(人教版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map